24
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      An electrochemically neutralized energy-assisted low-cost acid-alkaline electrolyzer for energy-saving electrolysis hydrogen generation

      Read this article at

      ScienceOpenPublisher
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The ability to reduce the energy consumed and the cost in water splitting is crucial for the generation of hydrogen, which can be stored and then oxidized to deliver clean, abundant, and sustainable energy with the regeneration of water.

          Abstract

          The ability to reduce the energy consumed and the cost in water splitting is crucial for the generation of hydrogen, which can be stored and then oxidized to deliver clean, abundant, and sustainable energy with the regeneration of water. Herein, we report an asymmetric electrolyzer with three-dimensional (3D) Ni 2P nanorod networks as bifunctional electrocatalysts for acidic cathode and alkaline anode that are separated by a bipolar membrane; this type of electrolyzer affords us with optimization in decreasing the energy required and maximizing the electrocatalysts: (1) pH gradient between an anolyte and a catholyte separated by a bipolar membrane provides the electrolyzer with additional electrochemical neutralization energy for facilitating water splitting and (2) efficiency of electrocatalysts can be maximized by offsetting the well-known mismatch of optimal conditions for electrocatalysts between the anode (normally alkaline) and the cathode (generally acidic). This unprecedented water electrolysis system can activate water splitting at an applied voltage of around 0.79 V that is significantly lower than the minimum theoretical voltage requirement (1.23 V), reducing electricity energy consumed by more than 35.8%.

          Related collections

          Most cited references47

          • Record: found
          • Abstract: found
          • Article: not found

          Electrical energy storage for the grid: a battery of choices.

          The increasing interest in energy storage for the grid can be attributed to multiple factors, including the capital costs of managing peak demands, the investments needed for grid reliability, and the integration of renewable energy sources. Although existing energy storage is dominated by pumped hydroelectric, there is the recognition that battery systems can offer a number of high-value opportunities, provided that lower costs can be obtained. The battery systems reviewed here include sodium-sulfur batteries that are commercially available for grid applications, redox-flow batteries that offer low cost, and lithium-ion batteries whose development for commercial electronics and electric vehicles is being applied to grid storage.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Benchmarking heterogeneous electrocatalysts for the oxygen evolution reaction.

            Objective evaluation of the activity of electrocatalysts for water oxidation is of fundamental importance for the development of promising energy conversion technologies including integrated solar water-splitting devices, water electrolyzers, and Li-air batteries. However, current methods employed to evaluate oxygen-evolving catalysts are not standardized, making it difficult to compare the activity and stability of these materials. We report a protocol for evaluating the activity, stability, and Faradaic efficiency of electrodeposited oxygen-evolving electrocatalysts. In particular, we focus on methods for determining electrochemically active surface area and measuring electrocatalytic activity and stability under conditions relevant to an integrated solar water-splitting device. Our primary figure of merit is the overpotential required to achieve a current density of 10 mA cm(-2) per geometric area, approximately the current density expected for a 10% efficient solar-to-fuels conversion device. Utilizing the aforementioned surface area measurements, one can determine electrocatalyst turnover frequencies. The reported protocol was used to examine the oxygen-evolution activity of the following systems in acidic and alkaline solutions: CoO(x), CoPi, CoFeO(x), NiO(x), NiCeO(x), NiCoO(x), NiCuO(x), NiFeO(x), and NiLaO(x). The oxygen-evolving activity of an electrodeposited IrO(x) catalyst was also investigated for comparison. Two general observations are made from comparing the catalytic performance of the OER catalysts investigated: (1) in alkaline solution, every non-noble metal system achieved 10 mA cm(-2) current densities at similar operating overpotentials between 0.35 and 0.43 V, and (2) every system but IrO(x) was unstable under oxidative conditions in acidic solutions.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Sustainable hydrogen production.

              Identifying and building a sustainable energy system are perhaps two of the most critical issues that today's society must address. Replacing our current energy carrier mix with a sustainable fuel is one of the key pieces in that system. Hydrogen as an energy carrier, primarily derived from water, can address issues of sustainability, environmental emissions, and energy security. Issues relating to hydrogen production pathways are addressed here. Future energy systems require money and energy to build. Given that the United States has a finite supply of both, hard decisions must be made about the path forward, and this path must be followed with a sustained and focused effort.
                Bookmark

                Author and article information

                Contributors
                Journal
                JMCAET
                Journal of Materials Chemistry A
                J. Mater. Chem. A
                Royal Society of Chemistry (RSC)
                2050-7488
                2050-7496
                2018
                2018
                : 6
                : 12
                : 4948-4954
                Affiliations
                [1 ]CAS Key Laboratory of Design and Assembly of Functional Nanostructures
                [2 ]Fujian Provincial Key Laboratory of Nanomaterials
                [3 ]Fujian Institute of Research on the Structure of Matter
                [4 ]Chinese Academy of Sciences
                [5 ]Fuzhou
                Article
                10.1039/C7TA10374C
                cea14ea1-16f4-49e8-b13b-6696c1fe1160
                © 2018

                http://rsc.li/journals-terms-of-use

                History

                Comments

                Comment on this article