26
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Validation of a HPLC/FLD Method for Quantification of Tocotrienols in Human Plasma

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Quantification of tocotrienols in human plasma is critical when the attention towards tocotrienols on its distinctive properties is arising. We aim to develop a simple and practical normal-phase high performance liquid chromatography method to quantify the amount of four tocotrienol homologues in human plasma. Using both the external and internal standards, tocotrienol homologues were quantified via a normal-phase high performance liquid chromatography with fluorescence detector maintained at the excitation wavelength of 295 nm and the emission wavelength of 325 nm. The four tocotrienol homologues were well separated within 30 minutes. A large interindividual variation between subjects was observed as the absorption of tocotrienols is dependent on food matrix and gut lipolysis. The accuracies of lower and upper limit of quantification ranged between 92% and 109% for intraday assays and 90% and 112% for interday assays. This method was successfully applied to quantify the total amount of four tocotrienol homologues in human plasma.

          Related collections

          Most cited references24

          • Record: found
          • Abstract: found
          • Article: not found

          Separation of vitamin E (tocopherol, tocotrienol, and tocomonoenol) in palm oil.

          Previous reports showed that vitamin E in palm oil consists of various isomers of tocopherols and tocotrienols [alpha-tocopherol (alpha-T), alpha-tocotrienol, gamma-tocopherol, gamma-tocotrienol, and delta-tocotrienol), and this is normally analyzed using silica column HPLC with fluorescence detection. In this study, an HPLC-fluorescence method using a C30 silica stationary phase was developed to separate and analyze the vitamin E isomers present in palm oil. In addition, an alpha-tocomonoenol (alpha-T1) isomer was quantified and characterized by MS and NMR. (alpha-T1 constitutes about 3-4% (40+/-5 ppm) of vitamin E in crude palm oil (CPO) and is found in the phytonutrient concentrate (350+/-10 ppm) from palm oil, whereas its concentration in palm fiber oil (PFO) is about 11% (430+/-6 ppm). The relative content of each individual vitamin E isomer before and after interesterification/transesterification of CPO to CPO methyl esters, followed by vacuum distillation of CPO methyl esters to yield the residue, remained the same except for alpha-T and gamma-T3. Whereas alpha-T constitutes about 36% of the total vitamin E in CPO, it is present at a level of 10% in the phytonutrient concentrate. On the other hand, the composition of gamma-T3 increases from 31% in CPO to 60% in the phytonutrient concentrate. Vitamin is present at 1160+/-43 ppm, and its concentrations in PFO and the phytonutrient concentrate are 4,040+/-41 and 13,780+/-65 ppm, respectively. The separation and quantification of alpha-T1 in palm oil will lead to more in-depth knowledge of the occurrence of vitamin E in palm oil.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: found
            Is Open Access

            Bioavailability of tocotrienols: evidence in human studies

            As a minor component of vitamin E, tocotrienols were evident in exhibiting biological activities such as neuroprotection, radio-protection, anti-cancer, anti-inflammatory and lipid lowering properties which are not shared by tocopherols. However, available data on the therapeutic window of tocotrienols remains controversial. It is important to understand the absorption and bioavailability mechanisms before conducting in-depth investigations into the therapeutic efficacy of tocotrienols in humans. In this review, we updated current evidence on the bioavailability of tocotrienols from human studies. Available data from five studies suggested that tocotrienols may reach its target destination through an alternative pathway despite its low affinity for α-tocopherol transfer protein. This was evident when studies reported considerable amount of tocotrienols detected in HDL particles and adipose tissues after oral consumption. Besides, plasma concentrations of tocotrienols were shown to be higher when administered with food while self-emulsifying preparation of tocotrienols was shown to enhance the absorption of tocotrienols. Nevertheless, mixed results were observed based on the outcome from 24 clinical studies, focusing on the dosages, study populations and formulations used. This may be due to the variation of compositions and dosages of tocotrienols used, suggesting a need to understand the formulation of tocotrienols in the study design. Essentially, implementation of a control diet such as AHA Step 1 diet may influence the study outcomes, especially in hypercholesterolemic subjects when lipid profile might be modified due to synergistic interaction between tocotrienols and control diet. We also found that the bioavailability of tocotrienols were inconsistent in different target populations, from healthy subjects to smokers and diseased patients. In this review, the effect of dosage, composition and formulation of tocotrienols as well as study populations on the bioavailability of tocotrienols will be discussed.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Quantification of tocopherols and tocotrienols in portuguese olive oils using HPLC with three different detection systems.

              Three different HPLC detection systems were compared for the determination of tocopherols and tocotrienols in olive oil: fluorescence and diode array connected in series, ultraviolet, and evaporative light scattering. The best results were obtained with the fluorescence detector, which was successfully applied in the quantification of tocopherols and tocotrienols in 18 samples of Portuguese olive oils. To support the validity of the method, the parameters evaluated were linearity, detection limits, repeatability, and recovery. All of the studied samples showed similar qualitative profiles with six identified compounds: alpha-T, beta-T, gamma-T, delta-T, alpha-T3, and gamma-T3. Alpha-tocopherol (alpha-T) was the main vitamin E isomer in all samples ranging from 93 to 260 mg/kg. The total tocopherols and tocotrienols ranged from 100 to 270 mg/kg. Geographic origin did not seem to influence the tocopherol and tocotrienol composition of the olive oils under evaluation.
                Bookmark

                Author and article information

                Journal
                Int J Anal Chem
                Int J Anal Chem
                IJAC
                International Journal of Analytical Chemistry
                Hindawi Publishing Corporation
                1687-8760
                1687-8779
                2015
                28 October 2015
                : 2015
                : 357609
                Affiliations
                1Malaysian Palm Oil Board (MPOB), No. 6, Persiaran Institusi, Bandar Baru Bangi, 43000 Kajang, Selangor Darul Ehsan, Malaysia
                2Department of Molecular Medicine, Faculty of Medicine, University of Malaya, 50603 Kuala Lumpur, Malaysia
                3International Medical University, No. 126, Jalan 19/155B, Bukit Jalil, 57000 Kuala Lumpur, Malaysia
                4Department of Surgery, Faculty of Medicine, University of Malaya, 50603 Kuala Lumpur, Malaysia
                5Department of Bioprocess Technology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia
                Author notes

                Academic Editor: David M. Lubman

                Article
                10.1155/2015/357609
                4641197
                cecd8a2c-322f-4c3a-a4a2-5ddef5bdf8d5
                Copyright © 2015 Hui-Ling Che et al.

                This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

                History
                : 29 July 2015
                : 23 September 2015
                : 4 October 2015
                Categories
                Research Article

                Analytical chemistry
                Analytical chemistry

                Comments

                Comment on this article