27
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Towards Resolving the Complete Fern Tree of Life

      research-article
      *
      PLoS ONE
      Public Library of Science

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          In the past two decades, molecular systematic studies have revolutionized our understanding of the evolutionary history of ferns. The availability of large molecular data sets together with efficient computer algorithms, now enables us to reconstruct evolutionary histories with previously unseen completeness. Here, the most comprehensive fern phylogeny to date, representing over one-fifth of the extant global fern diversity, is inferred based on four plastid genes. Parsimony and maximum-likelihood analyses provided a mostly congruent results and in general supported the prevailing view on the higher-level fern systematics. At a deep phylogenetic level, the position of horsetails depended on the optimality criteria chosen, with horsetails positioned as the sister group either of Marattiopsida-Polypodiopsida clade or of the Polypodiopsida. The analyses demonstrate the power of using a ‘supermatrix’ approach to resolve large-scale phylogenies and reveal questionable taxonomies. These results provide a valuable background for future research on fern systematics, ecology, biogeography and other evolutionary studies.

          Related collections

          Most cited references78

          • Record: found
          • Abstract: not found
          • Article: not found

          The Parsimony Ratchet, a New Method for Rapid Parsimony Analysis

            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            The Ascomycota tree of life: a phylum-wide phylogeny clarifies the origin and evolution of fundamental reproductive and ecological traits.

            We present a 6-gene, 420-species maximum-likelihood phylogeny of Ascomycota, the largest phylum of Fungi. This analysis is the most taxonomically complete to date with species sampled from all 15 currently circumscribed classes. A number of superclass-level nodes that have previously evaded resolution and were unnamed in classifications of the Fungi are resolved for the first time. Based on the 6-gene phylogeny we conducted a phylogenetic informativeness analysis of all 6 genes and a series of ancestral character state reconstructions that focused on morphology of sporocarps, ascus dehiscence, and evolution of nutritional modes and ecologies. A gene-by-gene assessment of phylogenetic informativeness yielded higher levels of informativeness for protein genes (RPB1, RPB2, and TEF1) as compared with the ribosomal genes, which have been the standard bearer in fungal systematics. Our reconstruction of sporocarp characters is consistent with 2 origins for multicellular sexual reproductive structures in Ascomycota, once in the common ancestor of Pezizomycotina and once in the common ancestor of Neolectomycetes. This first report of dual origins of ascomycete sporocarps highlights the complicated nature of assessing homology of morphological traits across Fungi. Furthermore, ancestral reconstruction supports an open sporocarp with an exposed hymenium (apothecium) as the primitive morphology for Pezizomycotina with multiple derivations of the partially (perithecia) or completely enclosed (cleistothecia) sporocarps. Ascus dehiscence is most informative at the class level within Pezizomycotina with most superclass nodes reconstructed equivocally. Character-state reconstructions support a terrestrial, saprobic ecology as ancestral. In contrast to previous studies, these analyses support multiple origins of lichenization events with the loss of lichenization as less frequent and limited to terminal, closely related species.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Horsetails and ferns are a monophyletic group and the closest living relatives to seed plants.

              Most of the 470-million-year history of plants on land belongs to bryophytes, pteridophytes and gymnosperms, which eventually yielded to the ecological dominance by angiosperms 90 Myr ago. Our knowledge of angiosperm phylogeny, particularly the branching order of the earliest lineages, has recently been increased by the concurrence of multigene sequence analyses. However, reconstructing relationships for all the main lineages of vascular plants that diverged since the Devonian period has remained a challenge. Here we report phylogenetic analyses of combined data--from morphology and from four genes--for 35 representatives from all the main lineages of land plants. We show that there are three monophyletic groups of extant vascular plants: (1) lycophytes, (2) seed plants and (3) a clade including equisetophytes (horsetails), psilotophytes (whisk ferns) and all eusporangiate and leptosporangiate ferns. Our maximum-likelihood analysis shows unambiguously that horsetails and ferns together are the closest relatives to seed plants. This refutes the prevailing view that horsetails and ferns are transitional evolutionary grades between bryophytes and seed plants, and has important implications for our understanding of the development and evolution of plants.
                Bookmark

                Author and article information

                Contributors
                Role: Editor
                Journal
                PLoS One
                plos
                plosone
                PLoS ONE
                Public Library of Science (San Francisco, USA )
                1932-6203
                2011
                13 October 2011
                : 6
                : 10
                : e24851
                Affiliations
                [1]Department of Biology, University of Turku, Turku, Finland
                Biodiversity Insitute of Ontario - University of Guelph, Canada
                Author notes

                Conceived and designed the experiments: SL. Performed the experiments: SL. Analyzed the data: SL. Contributed reagents/materials/analysis tools: SL. Wrote the paper: SL.

                Article
                PONE-D-11-07415
                10.1371/journal.pone.0024851
                3192703
                22022365
                cece43a9-b8dc-417a-9801-69afd120ce78
                Samuli Lehtonen. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
                History
                : 27 April 2011
                : 19 August 2011
                Page count
                Pages: 6
                Categories
                Research Article
                Biology
                Evolutionary Biology
                Evolutionary Systematics
                Taxonomy
                Plant Taxonomy
                Cladistics
                Molecular Systematics
                Phylogenetics
                Plant Science
                Botany
                Plant Taxonomy
                Pteridology
                Plant Evolution

                Uncategorized
                Uncategorized

                Comments

                Comment on this article