+1 Recommend
0 collections
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Anlotinib: a novel multi-targeting tyrosine kinase inhibitor in clinical development


      Read this article at

          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.


          Anlotinib is a new, orally administered tyrosine kinase inhibitor that targets vascular endothelial growth factor receptor (VEGFR), fibroblast growth factor receptor (FGFR), platelet-derived growth factor receptors (PDGFR), and c-kit. Compared to the effect of placebo, it improved both progression-free survival (PFS) and overall survival (OS) in a phase III trial in patients with advanced non-small-cell lung cancer (NSCLC), despite progression of the cancer after two lines of prior treatments. Recently, the China Food and Drug Administration (CFDA) approved single agent anlotinib as a third-line treatment for patients with advanced NSCLC. Moreover, a randomized phase IIB trial demonstrated that anlotinib significantly prolonged the median PFS in patients with advanced soft tissue sarcoma (STS). Anlotinib also showed promising efficacy in patients with advanced medullary thyroid carcinoma and metastatic renal cell carcinoma (mRCC). The tolerability profile of anlotinib is similar to that of other tyrosine kinase inhibitors that target VEGFR and other tyrosine kinase-mediated pathways; however, anlotinib has a significantly lower incidence of grade 3 or higher side effects compared to that of sunitinib. We review the rationale, clinical evidence, and future perspectives of anlotinib for the treatment of multiple cancers.

          Related collections

          Most cited references 39

          • Record: found
          • Abstract: found
          • Article: not found

          Vandetanib in patients with locally advanced or metastatic medullary thyroid cancer: a randomized, double-blind phase III trial.

          There is no effective therapy for patients with advanced medullary thyroid carcinoma (MTC). Vandetanib, a once-daily oral inhibitor of RET kinase, vascular endothelial growth factor receptor, and epidermal growth factor receptor signaling, has previously shown antitumor activity in a phase II study of patients with advanced hereditary MTC. Patients with advanced MTC were randomly assigned in a 2:1 ratio to receive vandetanib 300 mg/d or placebo. On objective disease progression, patients could elect to receive open-label vandetanib. The primary end point was progression-free survival (PFS), determined by independent central Response Evaluation Criteria in Solid Tumors (RECIST) assessments. Between December 2006 and November 2007, 331 patients (mean age, 52 years; 90% sporadic; 95% metastatic) were randomly assigned to receive vandetanib (231) or placebo (100). At data cutoff (July 2009; median follow-up, 24 months), 37% of patients had progressed and 15% had died. The study met its primary objective of PFS prolongation with vandetanib versus placebo (hazard ratio [HR], 0.46; 95% CI, 0.31 to 0.69; P < .001). Statistically significant advantages for vandetanib were also seen for objective response rate (P < .001), disease control rate (P = .001), and biochemical response (P < .001). Overall survival data were immature at data cutoff (HR, 0.89; 95% CI, 0.48 to 1.65). A final survival analysis will take place when 50% of the patients have died. Common adverse events (any grade) occurred more frequently with vandetanib compared with placebo, including diarrhea (56% v 26%), rash (45% v 11%), nausea (33% v 16%), hypertension (32% v 5%), and headache (26% v 9%). Vandetanib demonstrated therapeutic efficacy in a phase III trial of patients with advanced MTC (ClinicalTrials.gov NCT00410761).
            • Record: found
            • Abstract: found
            • Article: not found

            Cabozantinib in progressive medullary thyroid cancer.

            Cabozantinib, a tyrosine kinase inhibitor (TKI) of hepatocyte growth factor receptor (MET), vascular endothelial growth factor receptor 2, and rearranged during transfection (RET), demonstrated clinical activity in patients with medullary thyroid cancer (MTC) in phase I. We conducted a double-blind, phase III trial comparing cabozantinib with placebo in 330 patients with documented radiographic progression of metastatic MTC. Patients were randomly assigned (2:1) to cabozantinib (140 mg per day) or placebo. The primary end point was progression-free survival (PFS). Additional outcome measures included tumor response rate, overall survival, and safety. The estimated median PFS was 11.2 months for cabozantinib versus 4.0 months for placebo (hazard ratio, 0.28; 95% CI, 0.19 to 0.40; P < .001). Prolonged PFS with cabozantinib was observed across all subgroups including by age, prior TKI treatment, and RET mutation status (hereditary or sporadic). Response rate was 28% for cabozantinib and 0% for placebo; responses were seen regardless of RET mutation status. Kaplan-Meier estimates of patients alive and progression-free at 1 year are 47.3% for cabozantinib and 7.2% for placebo. Common cabozantinib-associated adverse events included diarrhea, palmar-plantar erythrodysesthesia, decreased weight and appetite, nausea, and fatigue and resulted in dose reductions in 79% and holds in 65% of patients. Adverse events led to treatment discontinuation in 16% of cabozantinib-treated patients and in 8% of placebo-treated patients. Cabozantinib (140 mg per day) achieved a statistically significant improvement of PFS in patients with progressive metastatic MTC and represents an important new treatment option for patients with this rare disease. This dose of cabozantinib was associated with significant but manageable toxicity.
              • Record: found
              • Abstract: found
              • Article: not found

              Role of tyrosine kinase inhibitors in cancer therapy.

              Cancer chemotherapy has been one of the major medical advances in the last few decades. However, the drugs used for this therapy have a narrow therapeutic index, and often the responses produced are only just palliative as well as unpredictable. In contrast, targeted therapy that has been introduced in recent years is directed against cancer-specific molecules and signaling pathways and thus has more limited nonspecific toxicities. Tyrosine kinases are an especially important target because they play an important role in the modulation of growth factor signaling. This review focuses on small molecule inhibitors of tyrosine kinase. They compete with the ATP binding site of the catalytic domain of several oncogenic tyrosine kinases. They are orally active, small molecules that have a favorable safety profile and can be easily combined with other forms of chemotherapy or radiation therapy. Several tyrosine kinase inhibitors (TKIs) have been found to have effective antitumor activity and have been approved or are in clinical trials. The inhibitors discussed in this manuscript are imatinib mesylate (STI571; Gleevec), gefitinib (Iressa), erlotinib (OSI-1774; Tarceva), lapatinib (GW-572016), canertinib (CI-1033), semaxinib (SU5416), vatalanib (PTK787/ZK222584), sorafenib (BAY 43-9006), sutent (SU11248), and leflunomide (SU101). TKIs are thus an important new class of targeted therapy that interfere with specific cell signaling pathways and thus allow target-specific therapy for selected malignancies. The pharmacological properties and anticancer activities of these inhibitors are discussed in this review. Use of these targeted therapies is not without limitations such as the development of resistance and the lack of tumor response in the general population. The availability of newer inhibitors and improved patient selection will help overcome these problems in the future.

                Author and article information

                J Hematol Oncol
                J Hematol Oncol
                Journal of Hematology & Oncology
                BioMed Central (London )
                19 September 2018
                19 September 2018
                : 11
                [1 ]GRID grid.459333.b, Affiliated Hospital of Qinghai University, Affiliated Cancer Hospital of Qinghai University, ; Xining, 810000 China
                [2 ]Shouguang Hospital of Traditional Chinese Medicine, Weifang, 262700 China
                [3 ]ISNI 0000 0001 0027 0586, GRID grid.412474.0, Peking University Cancer Hospital and Institute, ; Beijing, 100142 China
                [4 ]The Fifth People’s Hospital of Qinghai Province, Xining, 810000 China
                © The Author(s). 2018

                Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License ( http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver ( http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

                Funded by: the Thousand Talents of Program of High-end Innovation of Qinghai Province in China
                Custom metadata
                © The Author(s) 2018

                Oncology & Radiotherapy

                anlotinib, tyrosine kinase inhibitor, vegfr, nsclc, sts


                Comment on this article