17
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Update on C3 glomerulopathy

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          C3 glomerulopathy refers to a disease process in which abnormal control of complement activation, degradation or deposition results in predominant C3 fragment deposition within the glomerulus and glomerular damage. Recent studies have improved our understanding of its pathogenesis. The key abnormality is uncontrolled C3b amplification in the circulation and/or along the glomerular basement membrane. Family studies in which disease segregates with structurally abnormal complement factor H-related (CFHR) proteins demonstrate that abnormal CFHR proteins are important in some types of C3 glomerulopathy. This is currently thought to be due to the ability of these proteins to antagonize the major negative regulator of C3 activation, complement factor H (CFH), a process termed ‘CFH de-regulation’. Recent clinicopathological cohort studies have led to further refinements in case definition, culminating in a 2013 consensus report, which provides recommendations regarding investigation and treatment. Early clinical experience with complement-targeted therapeutics, notably C5 inhibitors, has also now been published. Here, we summarize the latest developments in C3 glomerulopathy.

          Related collections

          Most cited references27

          • Record: found
          • Abstract: found
          • Article: found
          Is Open Access

          C3 glomerulopathy: consensus report

          C3 glomerulopathy is a recently introduced pathological entity whose original definition was glomerular pathology characterized by C3 accumulation with absent or scanty immunoglobulin deposition. In August 2012, an invited group of experts (comprising the authors of this document) in renal pathology, nephrology, complement biology, and complement therapeutics met to discuss C3 glomerulopathy in the first C3 Glomerulopathy Meeting. The objectives were to reach a consensus on: the definition of C3 glomerulopathy, appropriate complement investigations that should be performed in these patients, and how complement therapeutics should be explored in the condition. This meeting report represents the current consensus view of the group.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Dimerization of complement factor H-related proteins modulates complement activation in vivo.

            The complement system is a key component regulation influences susceptibility to age-related macular degeneration, meningitis, and kidney disease. Variation includes genomic rearrangements within the complement factor H-related (CFHR) locus. Elucidating the mechanism underlying these associations has been hindered by the lack of understanding of the biological role of CFHR proteins. Here we present unique structural data demonstrating that three of the CFHR proteins contain a shared dimerization motif and that this hitherto unrecognized structural property enables formation of both homodimers and heterodimers. Dimerization confers avidity for tissue-bound complement fragments and enables these proteins to efficiently compete with the physiological complement inhibitor, complement factor H (CFH), for ligand binding. Our data demonstrate that these CFHR proteins function as competitive antagonists of CFH to modulate complement activation in vivo and explain why variation in the CFHRs predisposes to disease.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Eculizumab for dense deposit disease and C3 glomerulonephritis.

              The principle defect in dense deposit disease and C3 glomerulonephritis is hyperactivity of the alternative complement pathway. Eculizumab, a monoclonal antibody that binds to C5 to prevent formation of the membrane attack complex, may prove beneficial. In this open-label, proof of concept efficacy and safety study, six subjects with dense deposit disease or C3 glomerulonephritis were treated with eculizumab every other week for 1 year. All had proteinuria >1 g/d and/or AKI at enrollment. Subjects underwent biopsy before enrollment and repeat biopsy at the 1-year mark. The subjects included three patients with dense deposit disease (including one patient with recurrent dense deposit disease in allograft) and three patients with C3 glomerulonephritis (including two patients with recurrent C3 glomerulonephritis in allograft). Genetic and complement function testing revealed a mutation in CFH and MCP in one subject each, C3 nephritic factor in three subjects, and elevated levels of serum membrane attack complex in three subjects. After 12 months, two subjects showed significantly reduced serum creatinine, one subject achieved marked reduction in proteinuria, and one subject had stable laboratory parameters but histopathologic improvements. Elevated serum membrane attack complex levels normalized on therapy and paralleled improvements in creatinine and proteinuria. Clinical and histopathologic data suggest a response to eculizumab in some but not all subjects with dense deposit disease and C3 glomerulonephritis. Elevation of serum membrane attack complex before treatment may predict response. Additional research is needed to define the subgroup of dense deposit disease/C3 glomerulonephritis patients in whom eculizumab therapy can be considered.
                Bookmark

                Author and article information

                Journal
                Nephrol Dial Transplant
                Nephrol. Dial. Transplant
                ndt
                ndt
                Nephrology Dialysis Transplantation
                Oxford University Press
                0931-0509
                1460-2385
                May 2016
                17 October 2014
                17 October 2014
                : 31
                : 5
                : 717-725
                Affiliations
                Centre for Complement and Inflammation Research (CCIR), Division ofImmunology and Inflammation, Department of Medicine, Imperial College London , London W12 0NN, UK
                Author notes
                Correspondence and offprint requests to: Thomas D. Barbour; E-mail: t.barbour@ 123456imperial.ac.uk
                Article
                gfu317
                10.1093/ndt/gfu317
                4848753
                25326473
                cedc3500-d2bc-4bf2-834d-37400c8a9878
                © The Author 2014. Published by Oxford University Press on behalf of ERA-EDTA.

                This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License ( http://creativecommons.org/licenses/by-nc/4.0/), which permits non-commercial re-use, distribution, and reproduction in any medium, provided the original work is properly cited. For commercial re-use, please contact journals.permissions@oup.com

                History
                : 13 August 2014
                : 10 September 2014
                Funding
                Funded by: Wellcome Trust http://dx.doi.org/10.13039/100004440
                Award ID: WT098476MA
                Categories
                Cutting-Edge Renal Science
                Reviews - Basic Science and Translational Nephrology

                Nephrology
                c3 glomerulopathy,complement,dense deposit,factor h
                Nephrology
                c3 glomerulopathy, complement, dense deposit, factor h

                Comments

                Comment on this article