13
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Actin cytoskeleton assembly regulates collagen production via TGF‐β type II receptor in human skin fibroblasts

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The dermal compartment of skin is primarily composed of collagen‐rich extracellular matrix (ECM), which is produced by dermal fibroblasts. In Young skin, fibroblasts attach to the ECM through integrins. During ageing, fragmentation of the dermal ECM limits fibroblast attachment. This reduced attachment is associated with decreased collagen production, a major cause of skin thinning and fragility, in the elderly. Fibroblast attachment promotes assembly of the cellular actin cytoskeleton, which generates mechanical forces needed for structural support. The mechanism(s) linking reduced assembly of the actin cytoskeleton to decreased collagen production remains unclear. Here, we report that disassembly of the actin cytoskeleton results in impairment of TGF‐β pathway, which controls collagen production, in dermal fibroblasts. Cytoskeleton disassembly rapidly down‐regulates TGF‐β type II receptor (TβRII) levels. This down‐regulation leads to reduced activation of downstream effectors Smad2/Smad3 and CCN2, resulting in decreased collagen production. These responses are fully reversible; restoration of actin cytoskeleton assembly up‐regulates TβRII, Smad2/Smad3, CCN2 and collagen expression. Finally, actin cytoskeleton‐dependent reduction of TβRII is mediated by induction of microRNA 21, a potent inhibitor of TβRII protein expression. Our findings reveal a novel mechanism that links actin cytoskeleton assembly and collagen expression in dermal fibroblasts. This mechanism likely contributes to loss of TβRII and collagen production, which are observed in aged human skin.

          Related collections

          Most cited references42

          • Record: found
          • Abstract: found
          • Article: not found

          Cellular mechanotransduction: putting all the pieces together again.

          Analysis of cellular mechanotransduction, the mechanism by which cells convert mechanical signals into biochemical responses, has focused on identification of critical mechanosensitive molecules and cellular components. Stretch-activated ion channels, caveolae, integrins, cadherins, growth factor receptors, myosin motors, cytoskeletal filaments, nuclei, extracellular matrix, and numerous other structures and signaling molecules have all been shown to contribute to the mechanotransduction response. However, little is known about how these different molecules function within the structural context of living cells, tissues, and organs to produce the orchestrated cellular behaviors required for mechanosensation, embryogenesis, and physiological control. Recent work from a wide range of fields reveals that organ, tissue, and cell anatomy are as important for mechanotransduction as individual mechanosensitive proteins and that our bodies use structural hierarchies (systems within systems) composed of interconnected networks that span from the macroscale to the nanoscale in order to focus stresses on specific mechanotransducer molecules. The presence of isometric tension (prestress) at all levels of these multiscale networks ensures that various molecular scale mechanochemical transduction mechanisms proceed simultaneously and produce a concerted response. Future research in this area will therefore require analysis, understanding, and modeling of tensionally integrated (tensegrity) systems of mechanochemical control.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Integrin signaling.

            Cells reside in a protein network, the extracellular matrix (ECM), which they secrete and mold into the intercellular space. The ECM exerts profound control over cells. The effects of the matrix are primarily mediated by integrins, a family of cell surface receptors that attach cells to the matrix and mediate mechanical and chemical signals from it. These signals regulate the activities of cytoplasmic kinases, growth factor receptors, and ion channels and control the organization of the intracellular actin cytoskeleton. Many integrin signals converge on cell cycle regulation, directing cells to live or die, to proliferate, or to exit the cell cycle and differentiate.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Decreased collagen production in chronologically aged skin: roles of age-dependent alteration in fibroblast function and defective mechanical stimulation.

              Reduced synthesis of collagen types I and III is characteristic of chronologically aged skin. The present report provides evidence that both cellular fibroblast aging and defective mechanical stimulation in the aged tissue contribute to reduced collagen synthesis. The reduction in collagen synthesis due to fibroblast aging was demonstrated by a lower in vitro production of type I procollagen by dermal fibroblasts isolated from skin of young (18 to 29 years) versus old (80+ years) individuals (82 +/- 16 versus 56 +/- 8 ng/ml; P < 0.05). A reduction in mechanical stimulation in chronologically aged skin was inferred from morphological, ultrastructural, and fluorescence microscopic studies. These studies, comparing dermal sections from young and old individuals, demonstrated a greater percentage of the cell surface attached to collagen fibers (78 +/- 6 versus 58 +/- 8%; P < 0.01) and more extensive cell spreading (1.0 +/- 0.3 vs. 0.5 +/- 0.3; P < 0.05) in young skin compared with old skin. These features are consistent with a lower level of mechanical stimulation on the cells in old versus young skin. Based on the findings presented here, we conclude that reduced collagen synthesis in chronologically aged skin reflects at least two different underlying mechanisms: cellular fibroblast aging and a lower level of mechanical stimulation.
                Bookmark

                Author and article information

                Contributors
                thquan@umich.edu
                Journal
                J Cell Mol Med
                J. Cell. Mol. Med
                10.1111/(ISSN)1582-4934
                JCMM
                Journal of Cellular and Molecular Medicine
                John Wiley and Sons Inc. (Hoboken )
                1582-1838
                1582-4934
                11 June 2018
                September 2018
                : 22
                : 9 ( doiID: 10.1111/jcmm.2018.22.issue-9 )
                : 4085-4096
                Affiliations
                [ 1 ] Department of Dermatology University of Michigan Medical School Ann Arbor MI USA
                Author notes
                [*] [* ] Correspondence

                Taihao Quan

                Email: thquan@ 123456umich.edu

                Author information
                http://orcid.org/0000-0002-0954-5109
                Article
                JCMM13685
                10.1111/jcmm.13685
                6111811
                29888864
                cf02cadc-a2ed-44c3-b818-8875c91c350c
                © 2018 The Authors. Journal of Cellular and Molecular Medicine published by John Wiley & Sons Ltd and Foundation for Cellular and Molecular Medicine.

                This is an open access article under the terms of the http://creativecommons.org/licenses/by/4.0/ License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.

                History
                : 24 April 2017
                : 23 April 2018
                Page count
                Figures: 5, Tables: 0, Pages: 12, Words: 6410
                Funding
                Funded by: National Institute of Health
                Award ID: AG19364
                Award ID: AG051849
                Award ID: AG054835
                Categories
                Original Article
                Original Articles
                Custom metadata
                2.0
                jcmm13685
                September 2018
                Converter:WILEY_ML3GV2_TO_NLMPMC version:version=5.4.4 mode:remove_FC converted:28.08.2018

                Molecular medicine
                collagen,cytoskeleton,extracellular matrix,skin ageing,tgf‐β signalling
                Molecular medicine
                collagen, cytoskeleton, extracellular matrix, skin ageing, tgf‐β signalling

                Comments

                Comment on this article