38
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Corticotropin Releasing Hormone and Proopiomelanocortin Involvement in the Cutaneous Response to Stress

      1 , 1 , 1 , 1 , 1
      Physiological Reviews
      American Physiological Society

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The skin is a known target organ for the proopiomelanocortin (POMC)-derived neuropeptides alpha-melanocyte stimulating hormone (alpha-MSH), beta-endorphin, and ACTH and also a source of these peptides. Skin expression levels of the POMC gene and POMC/corticotropin releasing hormone (CRH) peptides are not static but are determined by such factors as the physiological changes associated with hair cycle (highest in anagen phase), ultraviolet radiation (UVR) exposure, immune cytokine release, or the presence of cutaneous pathology. Among the cytokines, the proinflammatory interleukin-1 produces important upregulation of cutaneous levels of POMC mRNA, POMC peptides, and MSH receptors; UVR also stimulates expression of all the components of the CRH/POMC system including expression of the corresponding receptors. Molecular characterization of the cutaneous POMC gene shows mRNA forms similar to those found in the pituitary, which are expressed together with shorter variants. The receptors for POMC peptides expressed in the skin are functional and include MC1, MC5 and mu-opiate, although most predominant are those of the MC1 class recognizing MSH and ACTH. Receptors for CRH are also present in the skin. Because expression of, for example, the MC1 receptor is stimulated in a similar dose-dependent manner by UVR, cytokines, MSH peptides or melanin precursors, actions of the ligand peptides represent a stochastic (predictable) nonspecific response to environmental/endogenous stresses. The powerful effects of POMC peptides and probably CRH on the skin pigmentary, immune, and adnexal systems are consistent with stress-neutralizing activity addressed at maintaining skin integrity to restrict disruptions of internal homeostasis. Hence, cutaneous expression of the CRH/POMC system is highly organized, encoding mediators and receptors similar to the hypothalamic-pituitary-adrenal (HPA) axis. This CRH/POMC skin system appears to generate a function analogous to the HPA axis, that in the skin is expressed as a highly localized response which neutralizes noxious stimuli and attendant immune reactions.

          Related collections

          Most cited references358

          • Record: found
          • Abstract: not found
          • Article: not found

          Characterization of a 41-residue ovine hypothalamic peptide that stimulates secretion of corticotropin and beta-endorphin

            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Variants of the melanocyte-stimulating hormone receptor gene are associated with red hair and fair skin in humans.

            Melanin pigmentation protects the skin from the damaging effects of ultraviolet radiation (UVR). There are two types of melanin, the red phaeomelanin and the black eumelanin, both of which are present in human skin. Eumelanin is photoprotective whereas phaeomelanin, because of its potential to generate free radicals in response to UVR, may contribute to UV-induced skin damage. Individuals with red hair have a predominance of phaeomelain in hair and skin and/or a reduced ability to produce eumelanin, which may explain why they fail to tan and are at risk from UVR. In mammals the relative proportions of phaeomelanin and eumelanin are regulated by melanocyte stimulating hormone (MSH), which acts via its receptor (MC1R), on melanocytes, to increase the synthesis of eumelanin and the product of the agouti locus which antagonises this action. In mice, mutations at either the MC1R gene or agouti affect the pattern of melanogenesis resulting in changes in coat colour. We now report the presence of MC1R gene sequence variants in humans. These were found in over 80% of individuals with red hair and/or fair skin that tans poorly but in fewer than 20% of individuals with brown or black hair and in less than 4% of those who showed a good tanning response. Our findings suggest that in humans, as in other mammals, the MC1R is a control point in the regulation of pigmentation phenotype and, more importantly, that variations in this protein are associated with a poor tanning response.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Obesity in the mouse model of pro-opiomelanocortin deficiency responds to peripheral melanocortin.

              Pro-opiomelanocortin (POMC)-derived peptides (the melanocortins adrenocorticotropin, alpha-, beta- and gamma-melanocyte stimulating hormone; and the endogenous opioid beta-endorphin) have a diverse array of biological activities, including roles in pigmentation, adrenocortical function and regulation of energy stores, and in the immune system and the central and peripheral nervous systems. We show here that mice lacking the POMC-derived peptides have obesity, defective adrenal development and altered pigmentation. This phenotype is similar to that of the recently identified human POMC-deficient patients. When treated with a stable alpha-melanocyte-stimulating hormone agonist, mutant mice lost more than 40% of their excess weight after 2 weeks. Our results identify the POMC-null mutant mouse as a model for studying the human POMC-null syndrome, and indicate the therapeutic use of peripheral melanocortin in the treatment of obesity.
                Bookmark

                Author and article information

                Journal
                Physiological Reviews
                Physiological Reviews
                American Physiological Society
                0031-9333
                1522-1210
                July 2000
                July 2000
                : 80
                : 3
                : 979-1020
                Affiliations
                [1 ]Department of Pathology, Loyola University Medical Center, Maywood; Department of Medicine, Southern Illinois University, Springfield, Illinois; Department of Dermatology, Ludwig Boltzmann Institute of Cell Biology and Immunobiology of the Skin, University of Munster, Munster; Department of Dermatology, University Hospital Eppendorf, University of Hamburg, Hamburg, Germany; and Department of Medicine and Biochemistry, McGill University and Royal Victoria Hospital, Montreal, Quebec, Canada
                Article
                10.1152/physrev.2000.80.3.979
                10893429
                cf081425-057b-408a-9667-209f16124011
                © 2000
                History

                Comments

                Comment on this article