5
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Correlative Light-Electron Microscopy detects lipopolysaccharide and its association with fibrin fibres in Parkinson’s Disease, Alzheimer’s Disease and Type 2 Diabetes Mellitus

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Many chronic diseases, including those classified as cardiovascular, neurodegenerative, or autoimmune, are characterized by persistent inflammation. The origin of this inflammation is mostly unclear, but it is typically mediated by inflammatory biomarkers, such as cytokines, and affected by both environmental and genetic factors. Recently circulating bacterial inflammagens such as lipopolysaccharide (LPS) have been implicated. We used a highly selective mouse monoclonal antibody to detect bacterial LPS in whole blood and/or platelet poor plasma of individuals with Parkinson’s Disease, Alzheimer’s type dementia, or Type 2 Diabetes Mellitus. Our results showed that staining is significantly enhanced (P < 0.0001) compared to healthy controls. Aberrant blood clots in these patient groups are characterized by amyloid formation as shown by the amyloid-selective stains thioflavin T and Amytracker™ 480 or 680. Correlative Light-Electron Microscopy (CLEM) illustrated that the LPS antibody staining is located in the same places as where amyloid fibrils may be observed. These data are consistent with the Iron Dysregulation and Dormant Microbes (IDDM) hypothesis in which bacterial inflammagens such as LPS are responsible for anomalous blood clotting as part of the aetiology of these chronic inflammatory diseases.

          Related collections

          Most cited references47

          • Record: found
          • Abstract: found
          • Article: found
          Is Open Access

          The dormant blood microbiome in chronic, inflammatory diseases

          Blood in healthy organisms is seen as a ‘sterile’ environment: it lacks proliferating microbes. Dormant or not-immediately-culturable forms are not absent, however, as intracellular dormancy is well established. We highlight here that a great many pathogens can survive in blood and inside erythrocytes. ‘Non-culturability’, reflected by discrepancies between plate counts and total counts, is commonplace in environmental microbiology. It is overcome by improved culturing methods, and we asked how common this would be in blood. A number of recent, sequence-based and ultramicroscopic studies have uncovered an authentic blood microbiome in a number of non-communicable diseases. The chief origin of these microbes is the gut microbiome (especially when it shifts composition to a pathogenic state, known as ‘dysbiosis’). Another source is microbes translocated from the oral cavity. ‘Dysbiosis’ is also used to describe translocation of cells into blood or other tissues. To avoid ambiguity, we here use the term ‘atopobiosis’ for microbes that appear in places other than their normal location. Atopobiosis may contribute to the dynamics of a variety of inflammatory diseases. Overall, it seems that many more chronic, non-communicable, inflammatory diseases may have a microbial component than are presently considered, and may be treatable using bactericidal antibiotics or vaccines.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: found
            Is Open Access

            Iron behaving badly: inappropriate iron chelation as a major contributor to the aetiology of vascular and other progressive inflammatory and degenerative diseases

            Background The production of peroxide and superoxide is an inevitable consequence of aerobic metabolism, and while these particular 'reactive oxygen species' (ROSs) can exhibit a number of biological effects, they are not of themselves excessively reactive and thus they are not especially damaging at physiological concentrations. However, their reactions with poorly liganded iron species can lead to the catalytic production of the very reactive and dangerous hydroxyl radical, which is exceptionally damaging, and a major cause of chronic inflammation. Review We review the considerable and wide-ranging evidence for the involvement of this combination of (su)peroxide and poorly liganded iron in a large number of physiological and indeed pathological processes and inflammatory disorders, especially those involving the progressive degradation of cellular and organismal performance. These diseases share a great many similarities and thus might be considered to have a common cause (i.e. iron-catalysed free radical and especially hydroxyl radical generation). The studies reviewed include those focused on a series of cardiovascular, metabolic and neurological diseases, where iron can be found at the sites of plaques and lesions, as well as studies showing the significance of iron to aging and longevity. The effective chelation of iron by natural or synthetic ligands is thus of major physiological (and potentially therapeutic) importance. As systems properties, we need to recognise that physiological observables have multiple molecular causes, and studying them in isolation leads to inconsistent patterns of apparent causality when it is the simultaneous combination of multiple factors that is responsible. This explains, for instance, the decidedly mixed effects of antioxidants that have been observed, since in some circumstances (especially the presence of poorly liganded iron) molecules that are nominally antioxidants can actually act as pro-oxidants. The reduction of redox stress thus requires suitable levels of both antioxidants and effective iron chelators. Some polyphenolic antioxidants may serve both roles. Understanding the exact speciation and liganding of iron in all its states is thus crucial to separating its various pro- and anti-inflammatory activities. Redox stress, innate immunity and pro- (and some anti-)inflammatory cytokines are linked in particular via signalling pathways involving NF-kappaB and p38, with the oxidative roles of iron here seemingly involved upstream of the IkappaB kinase (IKK) reaction. In a number of cases it is possible to identify mechanisms by which ROSs and poorly liganded iron act synergistically and autocatalytically, leading to 'runaway' reactions that are hard to control unless one tackles multiple sites of action simultaneously. Some molecules such as statins and erythropoietin, not traditionally associated with anti-inflammatory activity, do indeed have 'pleiotropic' anti-inflammatory effects that may be of benefit here. Conclusion Overall we argue, by synthesising a widely dispersed literature, that the role of poorly liganded iron has been rather underappreciated in the past, and that in combination with peroxide and superoxide its activity underpins the behaviour of a great many physiological processes that degrade over time. Understanding these requires an integrative, systems-level approach that may lead to novel therapeutic targets.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Gut Microbiota Contribute to Age-Related Changes in Skeletal Muscle Size, Composition, and Function: Biological Basis for a Gut-Muscle Axis

              Skeletal muscle is a highly plastic tissue that plays a central role in human health and disease. Aging is associated with a decrease in muscle mass and function (sarcopenia) that is associated with a loss of independence and reduced quality of life. Gut microbiota, the bacteria, archaea, viruses, and eukaryotic microbes residing in the gastrointestinal tract are emerging as a potential contributor to age-associated muscle decline. Specifically, advancing age is characterized by a dysbiosis of gut microbiota that is associated with increased intestinal permeability, facilitating the passage of endotoxin and other microbial products (e.g., indoxyl sulfate) into the circulation. Upon entering the circulation, LPS and other microbial factors promote inflammatory signaling and skeletal muscle changes that are hallmarks of the aging muscle phenotype. This review will summarize existing literature suggesting cross-talk between gut microbiota and skeletal muscle health, with emphasis on the significance of this axis for mediating changes in aging skeletal muscle size, composition, and function.
                Bookmark

                Author and article information

                Contributors
                resiap@sun.ac.za
                Journal
                Sci Rep
                Sci Rep
                Scientific Reports
                Nature Publishing Group UK (London )
                2045-2322
                14 November 2018
                14 November 2018
                2018
                : 8
                : 16798
                Affiliations
                [1 ]ISNI 0000 0001 2214 904X, GRID grid.11956.3a, Department of Physiological Sciences, , Stellenbosch University, ; Stellenbosch, Private Bag X1 Matieland, 7602 South Africa
                [2 ]ISNI 0000 0001 2214 904X, GRID grid.11956.3a, Central Analytical Facilities, Fluorescence Microscopy Unit, , Stellenbosch University, ; Stellenbosch, Private Bag X1 Matieland, 7602 South Africa
                [3 ]ISNI 0000 0001 2214 904X, GRID grid.11956.3a, Department of Internal Medicine, , Stellenbosch University, ; Stellenbosch, Private Bag X1 Matieland, 7602 South Africa
                [4 ]ISNI 0000000121662407, GRID grid.5379.8, School of Chemistry, , The University of Manchester, ; 131 Princess St, Manchester, Lancs M1 7DN UK
                [5 ]ISNI 0000000121662407, GRID grid.5379.8, Manchester Institute of Biotechnology, , The University of Manchester, ; 131 Princess St, Manchester, Lancs M1 7DN UK
                Author information
                http://orcid.org/0000-0001-5838-7963
                http://orcid.org/0000-0002-9108-2384
                Article
                35009
                10.1038/s41598-018-35009-y
                6235901
                30429533
                cf16b75a-f5c8-4662-ab3d-7cb253ed4aab
                © The Author(s) 2018

                Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.

                History
                : 26 July 2018
                : 27 October 2018
                Categories
                Article
                Custom metadata
                © The Author(s) 2018

                Uncategorized
                Uncategorized

                Comments

                Comment on this article