29
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      The role of osteopontin in the progression of solid organ tumour

      review-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Osteopontin (OPN) is a bone sialoprotein involved in osteoclast attachment to mineralised bone matrix, as well as being a bone matrix protein, OPN is also a versatile protein that acts on various receptors which are associated with different signalling pathways implicated in cancer. OPN mediates various biological events involving the immune system and the vascular system; the protein plays a role in processes such as immune response, cell adhesion and migration, and tumorigenesis. This review discusses the potential role of OPN in tumour cell proliferation, angiogenesis and metastasis, as well as the molecular mechanisms involved in these processes in different cancers, including brain, lung, kidney, liver, bladder, breast, oesophageal, gastric, colon, pancreatic, prostate and ovarian cancers. The understanding of OPN’s role in tumour development and progression could potentially influence cancer therapy and contribute to the development of novel anti-tumour treatments.

          Related collections

          Most cited references114

          • Record: found
          • Abstract: found
          • Article: found
          Is Open Access

          Fate decision of mesenchymal stem cells: adipocytes or osteoblasts?

          Mesenchymal stem cells (MSCs), a non-hematopoietic stem cell population first discovered in bone marrow, are multipotent cells capable of differentiating into mature cells of several mesenchymal tissues, such as fat and bone. As common progenitor cells of adipocytes and osteoblasts, MSCs are delicately balanced for their differentiation commitment. Numerous in vitro investigations have demonstrated that fat-induction factors inhibit osteogenesis, and, conversely, bone-induction factors hinder adipogenesis. In fact, a variety of external cues contribute to the delicate balance of adipo-osteogenic differentiation of MSCs, including chemical, physical, and biological factors. These factors trigger different signaling pathways and activate various transcription factors that guide MSCs to commit to either lineage. The dysregulation of the adipo-osteogenic balance has been linked to several pathophysiologic processes, such as aging, obesity, osteopenia, osteopetrosis, and osteoporosis. Thus, the regulation of MSC differentiation has increasingly attracted great attention in recent years. Here, we review external factors and their signaling processes dictating the reciprocal regulation between adipocytes and osteoblasts during MSC differentiation and the ultimate control of the adipo-osteogenic balance.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            The role of STATs in transcriptional control and their impact on cellular function.

            The STAT proteins (Signal Transducers and Activators of Transcription), were identified in the last decade as transcription factors which were critical in mediating virtually all cytokine driven signaling. These proteins are latent in the cytoplasm and become activated through tyrosine phosphorylation which typically occurs through cytokine receptor associated kinases (JAKs) or growth factor receptor tyrosine kinases. Recently a number of non-receptor tyrosine kinases (for example src and abl) have been found to cause STAT phosphorylation. Phosphorylated STATs form homo- or hetero-dimers, enter the nucleus and working coordinately with other transcriptional co-activators or transcription factors lead to increased transcriptional initiation. In normal cells and in animals, ligand dependent activation of the STATs is a transient process, lasting for several minutes to several hours. In contrast, in many cancerous cell lines and tumors, where growth factor dysregulation is frequently at the heart of cellular transformation, the STAT proteins (in particular Stats 1, 3 and 5) are persistently tyrosine phosphorylated or activated. The importance of STAT activation to growth control in experiments using anti-sense molecules or dominant negative STAT protein encoding constructs performed in cell lines or studies in animals lacking specific STATs strongly indicate that STATs play an important role in controlling cell cycle progression and apoptosis. Stat1 plays an important role in growth arrest, in promoting apoptosis and is implicated as a tumor suppressor; while Stats 3 and 5 are involved in promoting cell cycle progression and cellular transformation and preventing apoptosis. Many questions remain including: (1) a better understanding of how the STAT proteins through association with other factors increase transcription initiation; (2) a more complete definition of the sets of genes which are activated by different STATs and (3) how these sets of activated genes differ as a function of cell type. Finally, in the context of many cancers, where STATs are frequently persistently activated, an understanding of the mechanisms leading to their constitutive activation and defining the potential importance of persistent STAT activation in human tumorigenesis remains. Oncogene (2000).
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Osteopontin: role in immune regulation and stress responses.

              Recent research has led to a better but as yet incomplete understanding of the complex roles osteopontin plays in mammalian physiology. A soluble protein found in all body fluids, it stimulates signal transduction pathways (via integrins and CD44 variants) similar to those stimulated by components of the extracellular matrix. This appears to promote the survival of cells exposed to potentially lethal insults such as ischemia/reperfusion or physical/chemical trauma. OPN is chemotactic for many cell types including macrophages, dendritic cells, and T cells; it enhances B lymphocyte immunoglobulin production and proliferation. In inflammatory situations it stimulates both pro- and anti-inflammatory processes, which on balance can be either beneficial or harmful depending on what other inputs the cell is receiving. OPN influences cell-mediated immunity and has been shown to have Th1-cytokine functions. OPN deficiency is linked to a reduced Th1 immune response in infectious diseases, autoimmunity and delayed type hypersensitivity. OPN's role in the central nervous system and in stress responses has also emerged as an important aspect related to its cytoprotective and immune functions. Evidence suggests that either OPN or anti-OPN monoclonal antibodies (depending on the circumstances) might be clinically useful in modulating OPN function. Manipulation of plasma OPN levels may be useful in the treatment of autoimmune disease, cancer metastasis, osteoporosis and some forms of stress.
                Bookmark

                Author and article information

                Contributors
                +0086 23 68765366 , jiantenggu@hotmail.com
                +0044 020 3315 8495 , d.ma@imperial.ac.uk
                Journal
                Cell Death Dis
                Cell Death Dis
                Cell Death & Disease
                Nature Publishing Group UK (London )
                2041-4889
                2 March 2018
                2 March 2018
                March 2018
                : 9
                : 3
                : 356
                Affiliations
                [1 ]GRID grid.439369.2, Department of Surgery and Cancer, Faculty of Medicine, Anaesthetics, Pain Medicine and Intensive Care, Imperial College London, , Chelsea and Westminster Hospital, ; London, UK
                [2 ]ISNI 0000 0004 1760 6682, GRID grid.410570.7, Department of Anaesthesiology, Southwest Hospital, , Third Military Medical University, ; Chongqing, China
                Author information
                http://orcid.org/0000-0002-0688-2097
                Article
                391
                10.1038/s41419-018-0391-6
                5834520
                29500465
                cf181833-2376-4214-8695-2acf43d8c701
                © The Author(s) 2018

                Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.

                History
                : 21 June 2017
                : 31 January 2018
                : 6 February 2018
                Categories
                Review Article
                Custom metadata
                © The Author(s) 2018

                Cell biology
                Cell biology

                Comments

                Comment on this article