18
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Myomegalin is a novel A-kinase anchoring protein involved in the phosphorylation of cardiac myosin binding protein C

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Background

          Cardiac contractility is regulated by dynamic phosphorylation of sarcomeric proteins by kinases such as cAMP-activated protein kinase A (PKA). Efficient phosphorylation requires that PKA be anchored close to its targets by A-kinase anchoring proteins (AKAPs). Cardiac Myosin Binding Protein-C (cMyBPC) and cardiac troponin I (cTNI) are hypertrophic cardiomyopathy (HCM)-causing sarcomeric proteins which regulate contractility in response to PKA phosphorylation.

          Results

          During a yeast 2-hybrid (Y2H) library screen using a trisphosphorylation mimic of the C1-C2 region of cMyBPC, we identified isoform 4 of myomegalin (MMGL) as an interactor of this N-terminal cMyBPC region. As MMGL has previously been shown to interact with phosphodiesterase 4D, we speculated that it may be a PKA-anchoring protein (AKAP).

          To investigate this possibility, we assessed the ability of MMGL isoform 4 to interact with PKA regulatory subunits R1A and R2A using Y2H-based direct protein-protein interaction assays. Additionally, to further elucidate the function of MMGL, we used it as bait to screen a cardiac cDNA library. Other PKA targets, viz. CARP, COMMD4, ENO1, ENO3 and cTNI were identified as putative interactors, with cTNI being the most frequent interactor.

          We further assessed and confirmed these interactions by fluorescent 3D-co-localization in differentiated H9C2 cells as well as by in vivo co-immunoprecipitation. We also showed that quantitatively more interaction occurs between MMGL and cTNI under β-adrenergic stress. Moreover, siRNA-mediated knockdown of MMGL leads to reduction of cMyBPC levels under conditions of adrenergic stress, indicating that MMGL-assisted phosphorylation is requisite for protection of cMyBPC against proteolytic cleavage.

          Conclusions

          This study ascribes a novel function to MMGL isoform 4: it meets all criteria for classification as an AKAP, and we show that is involved in the phosphorylation of cMyBPC as well as cTNI, hence MMGL is an important regulator of cardiac contractility. This has further implications for understanding the patho-aetiology of HCM-causing mutations in the genes encoding cMyBPC and cTNI, and raises the question of whether MMGL might itself be considered a candidate HCM-causing or modifying factor.

          Related collections

          Most cited references26

          • Record: found
          • Abstract: found
          • Article: not found

          AKAP signalling complexes: focal points in space and time.

          Multiprotein signalling networks create focal points of enzyme activity that disseminate the intracellular action of many hormones and neurotransmitters. Accordingly, the spatio-temporal activation of protein kinases and phosphatases is an important factor in controlling where and when phosphorylation events occur. Anchoring proteins provide a molecular framework that orients these enzymes towards selected substrates. A-kinase anchoring proteins (AKAPs) are signal-organizing molecules that compartmentalize various enzymes that are regulated by second messengers.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Hypertrophic cardiomyopathy: distribution of disease genes, spectrum of mutations, and implications for a molecular diagnosis strategy.

            Hypertrophic cardiomyopathy is an autosomal-dominant disorder in which 10 genes and numerous mutations have been reported. The aim of the present study was to perform a systematic screening of these genes in a large population, to evaluate the distribution of the disease genes, and to determine the best molecular strategy in clinical practice. The entire coding sequences of 9 genes (MYH7, MYBPC3, TNNI3, TNNT2, MYL2, MYL3, TPM1, ACTC, andTNNC1) were analyzed in 197 unrelated index cases with familial or sporadic hypertrophic cardiomyopathy. Disease-causing mutations were identified in 124 index patients ( approximately 63%), and 97 different mutations, including 60 novel ones, were identified. The cardiac myosin-binding protein C (MYBPC3) and beta-myosin heavy chain (MYH7) genes accounted for 82% of families with identified mutations (42% and 40%, respectively). Distribution of the genes varied according to the prognosis (P=0.036). Moreover, a mutation was found in 15 of 25 index cases with "sporadic" hypertrophic cardiomyopathy (60%). Finally, 6 families had patients with more than one mutation, and phenotype analyses suggested a gene dose effect in these compound-heterozygous, double-heterozygous, or homozygous patients. These results might have implications for genetic diagnosis strategy and, subsequently, for genetic counseling. First, on the basis of this experience, the screening of already known mutations is not helpful. The analysis should start by testing MYBPC3 and MYH7 and then focus on TNNI3, TNNT2, and MYL2. Second, in particularly severe phenotypes, several mutations should be searched. Finally, sporadic cases can be successfully screened.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Signaling through scaffold, anchoring, and adaptor proteins.

              The process by which extracellular signals are relayed from the plasma membrane to specific intracellular sites is an essential facet of cellular regulation. Many signaling pathways do so by altering the phosphorylation state of tyrosine, serine, or threonine residues of target proteins. Recently, it has become apparent that regulatory mechanisms exist to influence where and when protein kinases and phosphatases are activated in the cell. The role of scaffold, anchoring, and adaptor proteins that contribute to the specificity of signal transduction events by recruiting active enzymes into signaling networks or by placing enzymes close to their substrates is discussed.
                Bookmark

                Author and article information

                Journal
                BMC Cell Biol
                BMC Cell Biology
                BioMed Central
                1471-2121
                2011
                10 May 2011
                : 12
                : 18
                Affiliations
                [1 ]US/MRC Centre for Molecular and Cellular Biology, Department of Biomedical Sciences, University of Stellenbosch, South Africa
                [2 ]Central Analytical Facility, Department of Physiology, University of Stellenbosch, South Africa
                Article
                1471-2121-12-18
                10.1186/1471-2121-12-18
                3103437
                21569246
                cf2037c0-9035-4ed6-bd54-af75116c78bc
                Copyright ©2011 Uys et al; licensee BioMed Central Ltd.

                This is an Open Access article distributed under the terms of the Creative Commons Attribution License ( http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

                Categories
                Research Article

                Cell biology
                Cell biology

                Comments

                Comment on this article