16
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Identification of Receptor Tyrosine Kinase, Discoidin Domain Receptor 1 (DDR1), as a Potential Biomarker for Serous Ovarian Cancer

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Ovarian cancer, one of the most common gynecological malignancies, has an aggressive phenotype. It is necessary to develop novel and more effective treatment strategies against advanced disease. Protein tyrosine kinases (PTKs) play an important role in the signal transduction pathways involved in tumorigenesis, and represent potential targets for anticancer therapies. In this study, we performed cDNA subtraction following polymerase chain reaction (PCR) using degenerate oligonucleotide primers to identify specifically overexpressed PTKs in ovarian cancer. Three PTKs, janus kinase 1, insulin-like growth factor 1 receptor, and discoidin domain receptor 1 (DDR1), were identified and only DDR1 was overexpressed in all ovarian cancer tissues examined for the validation by quantitative real-time PCR. The DDR1 protein was expressed in 63% (42/67) of serous ovarian cancer tissue, whereas it was undetectable in normal ovarian surface epithelium. DDR1 was expressed significantly more frequently in high-grade (79%) and advanced stage (77%) tumors compared to low-grade (50%) and early stage (43%) tumors. The expression of the DDR1 protein significantly correlated with poor disease-free survival. Although its functional role and clinical utility remain to be examined in future studies, our results suggest that the expression of DDR1 may serve as both a potential biomarker and a molecular target for advanced ovarian cancer.

          Related collections

          Most cited references28

          • Record: found
          • Abstract: found
          • Article: not found

          Global survey of phosphotyrosine signaling identifies oncogenic kinases in lung cancer.

          Despite the success of tyrosine kinase-based cancer therapeutics, for most solid tumors the tyrosine kinases that drive disease remain unknown, limiting our ability to identify drug targets and predict response. Here we present the first large-scale survey of tyrosine kinase activity in lung cancer. Using a phosphoproteomic approach, we characterize tyrosine kinase signaling across 41 non-small cell lung cancer (NSCLC) cell lines and over 150 NSCLC tumors. Profiles of phosphotyrosine signaling are generated and analyzed to identify known oncogenic kinases such as EGFR and c-Met as well as novel ALK and ROS fusion proteins. Other activated tyrosine kinases such as PDGFRalpha and DDR1 not previously implicated in the genesis of NSCLC are also identified. By focusing on activated cell circuitry, the approach outlined here provides insight into cancer biology not available at the chromosomal and transcriptional levels and can be applied broadly across all human cancers.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Quantitative chemical proteomics reveals mechanisms of action of clinical ABL kinase inhibitors.

            We describe a chemical proteomics approach to profile the interaction of small molecules with hundreds of endogenously expressed protein kinases and purine-binding proteins. This subproteome is captured by immobilized nonselective kinase inhibitors (kinobeads), and the bound proteins are quantified in parallel by mass spectrometry using isobaric tags for relative and absolute quantification (iTRAQ). By measuring the competition with the affinity matrix, we assess the binding of drugs to their targets in cell lysates and in cells. By mapping drug-induced changes in the phosphorylation state of the captured proteome, we also analyze signaling pathways downstream of target kinases. Quantitative profiling of the drugs imatinib (Gleevec), dasatinib (Sprycel) and bosutinib in K562 cells confirms known targets including ABL and SRC family kinases and identifies the receptor tyrosine kinase DDR1 and the oxidoreductase NQO2 as novel targets of imatinib. The data suggest that our approach is a valuable tool for drug discovery.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Chemical proteomic profiles of the BCR-ABL inhibitors imatinib, nilotinib, and dasatinib reveal novel kinase and nonkinase targets.

              The BCR-ABL tyrosine kinase inhibitor imatinib represents the current frontline therapy in chronic myeloid leukemia. Because many patients develop imatinib resistance, 2 second-generation drugs, nilotinib and dasatinib, displaying increased potency against BCR-ABL were developed. To predict potential side effects and novel medical uses, we generated comprehensive drug-protein interaction profiles by chemical proteomics for all 3 drugs. Our studies yielded 4 major findings: (1) The interaction profiles of the 3 drugs displayed strong differences and only a small overlap covering the ABL kinases. (2) Dasatinib bound in excess of 30 Tyr and Ser/Thr kinases, including major regulators of the immune system, suggesting that dasatinib might have a particular impact on immune function. (3) Despite the high specificity of nilotinib, the receptor tyrosine kinase DDR1 was identified and validated as an additional major target. (4) The oxidoreductase NQO2 was bound and inhibited by imatinib and nilotinib at physiologically relevant drug concentrations, representing the first nonkinase target of these drugs.
                Bookmark

                Author and article information

                Journal
                Int J Mol Sci
                ijms
                International Journal of Molecular Sciences
                Molecular Diversity Preservation International (MDPI)
                1422-0067
                31 January 2011
                2011
                : 12
                : 2
                : 971-982
                Affiliations
                Division of Obstetrics and Gynecology, Niigata University, Graduate School of Medical and Dental Sciences, Niigata, 951-8520, Japan; E-Mails: zenkinka@ 123456yahoo.co.jp (J.Q.); sadachi@ 123456med.niigata-u.ac.jp (S.A.); yoshikou@ 123456med.niigata-u.ac.jp (K.Y.); tanaken@ 123456med.niigata-u.ac.jp (K.T.)
                Author notes
                [* ]Author to whom correspondence should be addressed; E-Mail: yahatat@ 123456med.niigata-u.ac.jp ; Tel.: +81-25-227-2320; Fax: +81-25-227-0789.
                Article
                ijms-12-00971
                10.3390/ijms12020971
                3083684
                21541037
                cf28f843-7e55-4bd1-9d35-dc75824a301e
                © 2011 by the authors; licensee MDPI, Basel, Switzerland.

                This article is an open-access article distributed under the terms and conditions of the Creative Commons Attribution license ( http://creativecommons.org/licenses/by/3.0/).

                History
                : 20 December 2010
                : 18 January 2011
                : 18 January 2011
                Categories
                Article

                Molecular biology
                ovarian cancer,tyrosine kinase,cdna subtraction,ddr1,degenerate pcr,disease biomarker

                Comments

                Comment on this article