1
views
0
recommends
+1 Recommend
1 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Ubiquitin-Fold Modifier-1 Participates in the Diabetic Inflammatory Response by Regulating NF-κB p65 Nuclear Translocation and the Ubiquitination and Degradation of IκBα

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Background

          Ubiquitin-fold modifier-1 (Ufm1) is a recently identified ubiquitin-like protein. We previously confirmed that Ufm1 expression was increased in diabetic mice. However, its role in the development of diabetes remains undefined.

          Methods

          Lentivirus-mediated gene knockdown and overexpression techniques were used to observe the effect of Ufm1 on the expression of inflammatory factors, adhesion molecules and chemokines, as well as the transcriptional activity of nuclear factor kappa-B (NF-κB) in macrophages. Western blot and immunofluorescence analyses were used to analyse the mechanism by which Ufm1 affects the transcriptional activity of NF-κB. Finally, the effects of Ufm1 on inflammation and pancreatic, renal and myocardial damage were observed in db/db mice.

          Results

          Knockdown of Ufm1 by lentivirus shRNA targeting Ufm1 (Lv-shUfm1) led to decreased secretion of IL-6, IL-1β, ICAM-1, VCAM-1, MCP-1 and CXCL2 in RAW264.7 cells that were exposed to LPS and TNF-α, while lentiviral overexpression of Ufm1 (Lv-Ufm1) caused the opposite effect. Interestingly, further investigation indicated that Ufm1 induced NF-κB p65 nuclear translocation in RAW264.7 cells via increasing the ubiquitination and degradation of IκBα. In an in vivo experiment, pretreatment of db/db mice with Lv-shUfm1 reduced the mRNA levels of TNF-α, IL-6, IL-1β, ICAM-1, VCAM-1, MCP-1 and CXCL2 in resident peritoneal macrophages (RPMs) and decreased the plasma levels of TNF-α, IL-6, IL-1β, ICAM-1, VCAM-1, MCP-1 and CXCL2. Additionally, in Lv-Ufm1-treated mice, the inverse results were observed. Following treatment with Lv-shUfm1 and Lv-Ufm1, NF-κB p65 nuclear translocation in RPMs was decreased and increased, respectively. Importantly, we observed that Lv-shUfm1 injection led to a decrease in plasma glycaemia, a reduction in urinary albuminuria and cardiomyocyte hypertrophy and an improvement in the histopathological appearance of pancreatic, kidney and myocardial tissue. Pretreatment of the mice with Lv-shUfm1 inhibited macrophage infiltration in the pancreas, kidney and myocardial tissue.

          Conclusion

          Our data elucidate a new biological function of Ufm1 that mediates inflammatory responses. Ufm1-mediated p65 nuclear translocation occurs by modulating the ubiquitination and degradation of IκBα. Moreover, downregulating Ufm1 is an effective strategy to prevent the development of type 2 diabetes and its complications.

          Related collections

          Most cited references 25

          • Record: found
          • Abstract: not found
          • Article: not found

          NF-κB: Ten Years After

            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Antidiabetic effects of Panax ginseng berry extract and the identification of an effective component.

            We evaluated antihyperglycemic and anti-obese effects of Panax ginseng berry extract and its major constituent, ginsenoside Re, in obese diabetic C57BL/6J ob/ ob mice and their lean littermates. Animals received daily intraperitoneal injections of Panax ginseng berry extract for 12 days. On day 12, 150 mg/kg extract-treated ob/ob mice became normoglycemic (137 +/- 6.7 mg/dl) and had significantly improved glucose tolerance. The overall glucose excursion during the 2-h intraperitoneal glucose tolerance test decreased by 46% (P < 0.01) compared with vehicle-treated ob/ob mice. The improvement in blood glucose levels in the extract-treated ob/ ob mice was associated with a significant reduction in serum insulin levels in fed and fasting mice. A hyperinsulinemic-euglycemic clamp study revealed a more than twofold increase in the rate of insulin-stimulated glucose disposal in treated ob/ ob mice (112 +/- 19.1 vs. 52 +/- 11.8 micromol x kg(-1) x min(-1) for the vehicle group, P < 0.01). In addition, the extract-treated ob/ob mice lost a significant amount of weight (from 51.7 +/- 1.9 g on day 0 to 45.7 +/- 1.2 on day 12, P < 0.01 vs. vehicle-treated ob/ob mice), associated with a significant reduction in food intake (P < 0.05) and a very significant increase in energy expenditure (P < 0.01) and body temperature (P < 0.01). Treatment with the extract also significantly reduced plasma cholesterol levels in ob/ob mice. Additional studies demonstrated that ginsenoside Re plays a significant role in antihyperglycemic action. This antidiabetic effect of ginsenoside Re was not associated with body weight changes, suggesting that other constituents in the extract have distinct pharmacological mechanisms on energy metabolism.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Intercellular adhesion molecule-1 deficiency is protective against nephropathy in type 2 diabetic db/db mice.

              Diabetic nephropathy is a leading cause of end-stage renal failure and is a growing concern given the increasing incidence of type 2 diabetes. Diabetic nephropathy is associated with progressive kidney macrophage accumulation and experimental studies suggest that intercellular adhesion molecule (ICAM)-1 facilitates kidney macrophage recruitment during type 1 diabetes. To ascertain the importance of ICAM-1 in promoting type 2 diabetic nephropathy, the development of renal injury in ICAM-1 intact and deficient db/db mice with equivalent hyperglycemia and obesity between ages 2 and 8 mo was examined and compared with results with normal db/+ mice. Increases in albuminuria (11-fold), glomerular leukocytes (10-fold), and interstitial leukocytes (three-fold) consisting of predominantly CD68+ macrophages were identified at 8 mo in diabetic db/db mice compared with nondiabetic db/+ mice. In comparison to db/db mice, ICAM-1-deficient db/db mice had marked reductions in albuminuria at 6 mo (77% downward arrow) and 8 mo (85% downward arrow). There was also a significant decrease in glomerular (63% downward arrow) and interstitial (83% downward arrow) leukocytes in ICAM-1-deficient db/db mice, which were associated with reduced glomerular hypertrophy and hypercellularity and tubular damage. The development of renal fibrosis (expression of TGF-beta1, collagen IV, and interstitial alpha-smooth muscle actin) was also strikingly attenuated in the ICAM-1-deficient db/db mice. Additional in vitro studies showed that macrophage activation by high glucose or advanced glycation end products could promote ICAM-1 expression on tubular cells and macrophage production of active TGF-beta1. Thus, ICAM-1 appears to be a critical promoter of nephropathy in mouse type 2 diabetes by facilitating kidney macrophage recruitment.
                Bookmark

                Author and article information

                Journal
                Drug Des Devel Ther
                Drug Des Devel Ther
                DDDT
                dddt
                Drug Design, Development and Therapy
                Dove
                1177-8881
                25 February 2020
                2020
                : 14
                : 795-810
                Affiliations
                [1 ]Department of Endocrinology, The First Affiliated Hospital of Bengbu Medical College , Bengbu, Anhui 233004, People’s Republic of China
                [2 ]Department of Endocrinology, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine , Shanghai 200011, People’s Republic of China
                Author notes
                Correspondence: Xiaolei Hu Department of Endocrinology, The First Affiliated Hospital of Bengbu Medical College , Bengbu, Anhui233004, People’s Republic of ChinaTel +86-0552-3086113 Email caesar80@163.com
                Fengling Chen Department of Endocrinology, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine , Shanghai200011, People’s Republic of ChinaTel +86-021-56691101 Email Prof_flchen@163.com
                Article
                238695
                10.2147/DDDT.S238695
                7049273
                © 2020 Hu et al.

                This work is published and licensed by Dove Medical Press Limited. The full terms of this license are available at https://www.dovepress.com/terms.php and incorporate the Creative Commons Attribution – Non Commercial (unported, v3.0) License ( http://creativecommons.org/licenses/by-nc/3.0/). By accessing the work you hereby accept the Terms. Non-commercial uses of the work are permitted without any further permission from Dove Medical Press Limited, provided the work is properly attributed. For permission for commercial use of this work, please see paragraphs 4.2 and 5 of our Terms ( https://www.dovepress.com/terms.php).

                Page count
                Figures: 11, References: 34, Pages: 16
                Categories
                Original Research

                Comments

                Comment on this article