7
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Next-Generation Sequencing Applications for Inherited Retinal Diseases

      review-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Inherited retinal diseases (IRDs) represent a collection of phenotypically and genetically diverse conditions. IRDs phenotype(s) can be isolated to the eye or can involve multiple tissues. These conditions are associated with diverse forms of inheritance, and variants within the same gene often can be associated with multiple distinct phenotypes. Such aspects of the IRDs highlight the difficulty met when establishing a genetic diagnosis in patients. Here we provide an overview of cutting-edge next-generation sequencing techniques and strategies currently in use to maximise the effectivity of IRD gene screening. These techniques have helped researchers globally to find elusive causes of IRDs, including copy number variants, structural variants, new IRD genes and deep intronic variants, among others. Resolving a genetic diagnosis with thorough testing enables a more accurate diagnosis and more informed prognosis and should also provide information on inheritance patterns which may be of particular interest to patients of a child-bearing age. Given that IRDs are heritable conditions, genetic counselling may be offered to help inform family planning, carrier testing and prenatal screening. Additionally, a verified genetic diagnosis may enable access to appropriate clinical trials or approved medications that may be available for the condition.

          Related collections

          Most cited references177

          • Record: found
          • Abstract: found
          • Article: not found

          Standards and Guidelines for the Interpretation of Sequence Variants: A Joint Consensus Recommendation of the American College of Medical Genetics and Genomics and the Association for Molecular Pathology

          The American College of Medical Genetics and Genomics (ACMG) previously developed guidance for the interpretation of sequence variants. 1 In the past decade, sequencing technology has evolved rapidly with the advent of high-throughput next generation sequencing. By adopting and leveraging next generation sequencing, clinical laboratories are now performing an ever increasing catalogue of genetic testing spanning genotyping, single genes, gene panels, exomes, genomes, transcriptomes and epigenetic assays for genetic disorders. By virtue of increased complexity, this paradigm shift in genetic testing has been accompanied by new challenges in sequence interpretation. In this context, the ACMG convened a workgroup in 2013 comprised of representatives from the ACMG, the Association for Molecular Pathology (AMP) and the College of American Pathologists (CAP) to revisit and revise the standards and guidelines for the interpretation of sequence variants. The group consisted of clinical laboratory directors and clinicians. This report represents expert opinion of the workgroup with input from ACMG, AMP and CAP stakeholders. These recommendations primarily apply to the breadth of genetic tests used in clinical laboratories including genotyping, single genes, panels, exomes and genomes. This report recommends the use of specific standard terminology: ‘pathogenic’, ‘likely pathogenic’, ‘uncertain significance’, ‘likely benign’, and ‘benign’ to describe variants identified in Mendelian disorders. Moreover, this recommendation describes a process for classification of variants into these five categories based on criteria using typical types of variant evidence (e.g. population data, computational data, functional data, segregation data, etc.). Because of the increased complexity of analysis and interpretation of clinical genetic testing described in this report, the ACMG strongly recommends that clinical molecular genetic testing should be performed in a CLIA-approved laboratory with results interpreted by a board-certified clinical molecular geneticist or molecular genetic pathologist or equivalent.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Coming of age: ten years of next-generation sequencing technologies.

            Since the completion of the human genome project in 2003, extraordinary progress has been made in genome sequencing technologies, which has led to a decreased cost per megabase and an increase in the number and diversity of sequenced genomes. An astonishing complexity of genome architecture has been revealed, bringing these sequencing technologies to even greater advancements. Some approaches maximize the number of bases sequenced in the least amount of time, generating a wealth of data that can be used to understand increasingly complex phenotypes. Alternatively, other approaches now aim to sequence longer contiguous pieces of DNA, which are essential for resolving structurally complex regions. These and other strategies are providing researchers and clinicians a variety of tools to probe genomes in greater depth, leading to an enhanced understanding of how genome sequence variants underlie phenotype and disease.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Recommendations for reporting of secondary findings in clinical exome and genome sequencing, 2016 update (ACMG SF v2.0): a policy statement of the American College of Medical Genetics and Genomics.

              Disclaimer: These recommendations are designed primarily as an educational resource for medical geneticists and other healthcare providers to help them provide quality medical services. Adherence to these recommendations is completely voluntary and does not necessarily assure a successful medical outcome. These recommendations should not be considered inclusive of all proper procedures and tests or exclusive of other procedures and tests that are reasonably directed toward obtaining the same results. In determining the propriety of any specific procedure or test, the clinician should apply his or her own professional judgment to the specific clinical circumstances presented by the individual patient or specimen. Clinicians are encouraged to document the reasons for the use of a particular procedure or test, whether or not it is in conformance with this statement. Clinicians also are advised to take notice of the date this statement was adopted and to consider other medical and scientific information that becomes available after that date. It also would be prudent to consider whether intellectual property interests may restrict the performance of certain tests and other procedures.To promote standardized reporting of actionable information from clinical genomic sequencing, in 2013, the American College of Medical Genetics and Genomics (ACMG) published a minimum list of genes to be reported as incidental or secondary findings. The goal was to identify and manage risks for selected highly penetrant genetic disorders through established interventions aimed at preventing or significantly reducing morbidity and mortality. The ACMG subsequently established the Secondary Findings Maintenance Working Group to develop a process for curating and updating the list over time. We describe here the new process for accepting and evaluating nominations for updates to the secondary findings list. We also report outcomes from six nominations received in the initial 15 months after the process was implemented. Applying the new process while upholding the core principles of the original policy statement resulted in the addition of four genes and removal of one gene; one gene did not meet criteria for inclusion. The updated secondary findings minimum list includes 59 medically actionable genes recommended for return in clinical genomic sequencing. We discuss future areas of focus, encourage continued input from the medical community, and call for research on the impact of returning genomic secondary findings.Genet Med 19 2, 249-255.
                Bookmark

                Author and article information

                Contributors
                Role: Academic Editor
                Role: Academic Editor
                Journal
                Int J Mol Sci
                Int J Mol Sci
                ijms
                International Journal of Molecular Sciences
                MDPI
                1422-0067
                26 May 2021
                June 2021
                : 22
                : 11
                : 5684
                Affiliations
                The School of Genetics & Microbiology, Trinity College Dublin, Dublin 2, Ireland; whelanl1@ 123456tcd.ie (L.W.); pete.humphries@ 123456tcd.ie (P.H.); jane.farrar@ 123456tcd.ie (G.J.F.)
                Author notes
                [* ]Correspondence: dockerya@ 123456tcd.ie
                Author information
                https://orcid.org/0000-0002-3423-2542
                https://orcid.org/0000-0002-0537-4349
                Article
                ijms-22-05684
                10.3390/ijms22115684
                8198572
                34073611
                cf487c2d-3700-4cb9-8b3d-531e5771de02
                © 2021 by the authors.

                Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license ( https://creativecommons.org/licenses/by/4.0/).

                History
                : 26 April 2021
                : 22 May 2021
                Categories
                Review

                Molecular biology
                genetic diagnosis,inherited retinal disease,rare disease,retina,sequencing,diagnostics,macula,genomics,variant interpretation,eye

                Comments

                Comment on this article