24
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Absence of cosmological constant problem in special relativistic field theory of gravity

      Preprint

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The principles of quantum field theory in flat spacetime suggest that gravity is mediated by a massless particle with helicity \(\pm2\), the so-called graviton. It is regarded as textbook knowledge that, when the self-coupling of a particle with these properties is considered, the long-wavelength structure of such a nonlinear theory is fixed to be that of general relativity. However, here we show that these arguments conceal an implicit assumption which is surreptitiously motivated by the very knowledge of general relativity. This is shown by providing a counterexample: we revisit a nonlinear theory of gravity which is not structurally equivalent to general relativity and that, in the non-interacting limit, describes a free helicity \(\pm2\) graviton. We explicitly prove that this theory can be understood as the result of self-coupling in complete parallelism to the well-known case of general relativity. The assumption which was seen as natural in previous analyses but biased the result is pointed out. This special relativistic field theory of gravity implies the decoupling of vacuum zero-point energies of matter and passes all the known experimental tests in gravitation.

          Related collections

          Author and article information

          Journal
          1406.7713

          General relativity & Quantum cosmology
          General relativity & Quantum cosmology

          Comments

          Comment on this article