86
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Loss of Slc4a1b Chloride/Bicarbonate Exchanger Function Protects Mechanosensory Hair Cells from Aminoglycoside Damage in the Zebrafish Mutant persephone

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Mechanosensory hair cell death is a leading cause of hearing and balance disorders in the human population. Hair cells are remarkably sensitive to environmental insults such as excessive noise and exposure to some otherwise therapeutic drugs. However, individual responses to damaging agents can vary, in part due to genetic differences. We previously carried out a forward genetic screen using the zebrafish lateral line system to identify mutations that alter the response of larval hair cells to the antibiotic neomycin, one of a class of aminoglycoside compounds that cause hair cell death in humans. The persephone mutation confers resistance to aminoglycosides. 5 dpf homozygous persephone mutants are indistinguishable from wild-type siblings, but differ in their retention of lateral line hair cells upon exposure to neomycin. The mutation in persephone maps to the chloride/bicarbonate exchanger slc4a1b and introduces a single Ser-to-Phe substitution in zSlc4a1b. This mutation prevents delivery of the exchanger to the cell surface and abolishes the ability of the protein to import chloride across the plasma membrane. Loss of function of zSlc4a1b reduces hair cell death caused by exposure to the aminoglycosides neomycin, kanamycin, and gentamicin, and the chemotherapeutic drug cisplatin. Pharmacological block of anion transport with the disulfonic stilbene derivatives DIDS and SITS, or exposure to exogenous bicarbonate, also protects hair cells against damage. Both persephone mutant and DIDS-treated wild-type larvae show reduced uptake of labeled aminoglycosides. persephone mutants also show reduced FM1-43 uptake, indicating a potential impact on mechanotransduction-coupled activity in the mutant. We propose that tight regulation of the ionic environment of sensory hair cells, mediated by zSlc4a1b activity, is critical for their sensitivity to aminoglcyoside antibiotics.

          Author Summary

          The majority of hearing loss in humans is caused by death of inner ear mechanosensory hair cells. The aminoglycosides, a family of antibiotics, cause permanent hearing loss and transient vestibular disorders in this fashion. If we can find ways to reduce the hair cell toxicity of these antibiotics, we will be better able to treat tuberculosis, meningitis, and infections arising from chronic conditions like cystic fibrosis. Our lab uses zebrafish as a tool to identify ways to block hair cell death. Zebrafish have hair cells on their surface that are killed by aminoglycosides. We generated a pool of mutants and identified fish that retain hair cells when exposed to aminoglycosides. Here we describe why one of these mutants, persephone, protects hair cells from aminoglycosides. persephone has a mutation in a chloride/bicarbonate exchanger. This mutant protein fails to move chloride across cell membranes. Loss of the protein's activity decreases aminoglycoside entry into hair cells. We speculate that the exchanger mutated in persephone may be a critical regulator of ionic conditions that promote entry of aminoglycosides into hair cells. The persephone mutant furthermore suggests that transiently altering the ionic environment of hair cells may be a useful approach to protect hair cells from aminoglycoside exposure.

          Related collections

          Most cited references59

          • Record: found
          • Abstract: found
          • Article: not found

          Lighting up the senses: FM1-43 loading of sensory cells through nonselective ion channels.

          We describe a novel mechanism for vital fluorescent dye entry into sensory cells and neurons: permeation through ion channels. In addition to the slow conventional uptake of styryl dyes by endocytosis, small styryl dyes such as FM1-43 rapidly and specifically label hair cells in the inner ear by entering through open mechanotransduction channels. This labeling can be blocked by pharmacological or mechanical closing of the channels. This phenomenon is not limited to hair cell transduction channels, because human embryonic kidney 293T cells expressing the vanilloid receptor (TRPV1) or a purinergic receptor (P2X2) rapidly take up FM1-43 when those receptor channels are opened and not when they are pharmacologically blocked. This channel permeation mechanism can also be used to label many sensory cell types in vivo. A single subcutaneous injection of FM1-43 (3 mg/kg body weight) in mice brightly labels hair cells, Merkel cells, muscle spindles, taste buds, enteric neurons, and primary sensory neurons within the cranial and dorsal root ganglia, persisting for several weeks. The pattern of labeling is specific; nonsensory cells and neurons remain unlabeled. The labeling of the sensory neurons requires dye entry through the sensory terminal, consistent with permeation through the sensory channels. This suggests that organic cationic dyes are able to pass through a number of different sensory channels. The bright and specific labeling with styryl dyes provides a novel way to study sensory cells and neurons in vivo and in vitro, and it offers new opportunities for visually assaying sensory channel function.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            FM1-43 dye behaves as a permeant blocker of the hair-cell mechanotransducer channel.

            Hair cells in mouse cochlear cultures are selectively labeled by brief exposure to FM1-43, a styryl dye used to study endocytosis and exocytosis. Real-time confocal microscopy indicates that dye entry is rapid and via the apical surface. Cooling to 4 degrees C and high extracellular calcium both reduce dye loading. Pretreatment with EGTA, a condition that breaks tip links and prevents mechanotransducer channel gating, abolishes subsequent dye loading in the presence of calcium. Dye loading recovers after calcium chelation with a time course similar to that described for tip-link regeneration. Myo7a mutant hair cells, which can transduce but have all mechanotransducer channels normally closed at rest, do not label with FM1-43 unless the bundles are stimulated by large excitatory stimuli. Extracellular perfusion of FM1-43 reversibly blocks mechanotransduction with half-blocking concentrations in the low micromolar range. The block is reduced by high extracellular calcium and is voltage dependent, decreasing at extreme positive and negative potentials, indicating that FM1-43 behaves as a permeant blocker of the mechanotransducer channel. The time course for the relief of block after voltage steps to extreme potentials further suggests that FM1-43 competes with other cations for binding sites within the pore of the channel. FM1-43 does not block the transducer channel from the intracellular side at concentrations that would cause complete block when applied extracellularly. Calcium chelation and FM1-43 both reduce the ototoxic effects of the aminoglycoside antibiotic neomycin sulfate, suggesting that FM1-43 and aminoglycosides enter hair cells via the same pathway.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Neomycin-induced hair cell death and rapid regeneration in the lateral line of zebrafish (Danio rerio).

              Mechanoreceptive hair cells are extremely sensitive to aminoglycoside antibiotics, including neomycin. Hair cell survival was assessed in larval wild-type zebrafish lateral line neuromasts 4 h after initial exposure to a range of neomycin concentrations for 1 h. Each of the lateral line neuromasts was scored in live fish for the presence or absence of hair cells using the fluorescent vital dye DASPEI to selectively label hair cells. All neuromasts were devoid of DASPEI-labeled hair cells 4 h after 500 microM neomycin exposure. Vital DASPEI staining was proportional to the number of hair cells per neuromast identified in fixed larvae using immunocytochemistry for acetylated tubulin and phalloidin labeling. The time course of hair cell regeneration in the lateral line neuromasts was also analyzed following neomycin-induced damage. Regenerated hair cells were first observed using live DASPEI staining 12 and 24 h following neomycin treatment. The potential role of proliferation in regenerating hair cells was analyzed. A 1 h pulse-fix protocol using bromodeoxyuridine (BrdU) incorporation was used to identify S-phase cells in neuromasts. BrdU incorporation in neomycin-damaged neuromasts did not differ from control neuromasts 4 h after drug exposure but was dramatically upregulated after 12 h. The proliferative cells identified during a 1 h period at 12 h after neomycin treatment were able to give rise to new hair cells by 24-48 h after drug treatment. The results presented here provide a standardized preparation for studying and identifying genes that influence vertebrate hair cell death, survival, and regeneration following ototoxic insults.
                Bookmark

                Author and article information

                Contributors
                Role: Editor
                Journal
                PLoS Genet
                PLoS Genet
                plos
                plosgen
                PLoS Genetics
                Public Library of Science (San Francisco, USA )
                1553-7390
                1553-7404
                October 2012
                October 2012
                11 October 2012
                : 8
                : 10
                : e1002971
                Affiliations
                [1 ]Department of Biological Structure, University of Washington, Seattle, Washington, United States of America
                [2 ]Virginia Merrill Bloedel Hearing Research Center, University of Washington, Seattle, Washington, United States of America
                [3 ]Department of Otolaryngology–Head and Neck Surgery, University of Washington, Seattle, Washington, United States of America
                [4 ]Renal Division and Molecular and Vascular Medicine Unit, Beth Israel Deaconess Medical Center, Boston, Massachusetts, United States of America
                [5 ]INSERM Unit 583, Universite de Montpellier, Institut des Neurosciences de Montpellier, Hopital St. Eloi, Montpellier, France
                Tel Aviv University, Israel
                Author notes

                The authors have declared that no competing interests exist.

                Conceived and designed the experiments: DWH BR KNO AKS RP SLA EWR DWR. Performed the experiments: DWH BR KNO AKS RP TL. Analyzed the data: DWH BR KNO AKS RP SLA EWR DWR. Wrote the paper: DWH KNO SLA EWR DWR.

                Article
                PGENETICS-D-12-00962
                10.1371/journal.pgen.1002971
                3469417
                23071446
                cf63ac5c-5bb6-441e-b276-9217c2906d77
                Copyright @ 2012

                This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

                History
                : 18 April 2012
                : 8 August 2012
                Page count
                Pages: 16
                Funding
                This work was supported by NIH grants DC 18–26, DC 005361, DC005987, DC010940, DK43495, and DK34854. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.
                Categories
                Research Article
                Biology
                Model Organisms
                Animal Models
                Zebrafish
                Molecular Cell Biology
                Cell Death
                Neuroscience
                Sensory Systems
                Auditory System

                Genetics
                Genetics

                Comments

                Comment on this article