8
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Combined chemical-biological treatment for prevention/rehabilitation of clogged wells by an iron-oxidizing bacterium.

      Environmental Science & Technology
      Bacteria, metabolism, Biofilms, Iron, Oxidation-Reduction

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Groundwater wells containing large concentrations of ferrous iron face serious clogging problems as a result of biotic iron oxidation. Following a short time after their start off, wells get clogged, and their production efficiency drop significantly up to a total obstruction, making cleanup and rehabilitation an economic burden. The present study was undertaken to test an experimental combined treatment (chemical and biological) for future prevention or rehabilitation of clogged wells. Sphaerotilus natans (an iron-oxidizing bacterium) freshly isolated from a deep well was grown to form biofilms on two systems: coupons and sand buried miniature wedge wire screen baskets. A combined chemical-biological treatment, applied at laboratory scale by use of glycolic acid (2%) and isolated bacteriophages against Sphaerotilus natans (SN1 and ER1-a newly isolated phage) at low multiplicity of infection (MOI), showed inhibition of biofilm formation and inactivation of the contaminant bacteria. In addition to complete inactivation of S. natans planktonic bacteria by the respective phages, earlier biofilm treatment with reduced glycolic acid concentration revealed efficient exopolysaccharide (EPS) digestion allowing phages to be increasingly efficient against biofilm matrix bacteria. Utilization of this combined treatment revealed clean surfaces of a model stainless steel wedge wire screen baskets (commonly used in wells) for up to 60 days.

          Related collections

          Author and article information

          Journal
          20297817
          10.1021/es903703v

          Chemistry
          Bacteria,metabolism,Biofilms,Iron,Oxidation-Reduction
          Chemistry
          Bacteria, metabolism, Biofilms, Iron, Oxidation-Reduction

          Comments

          Comment on this article