120
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Impact of nine common type 2 diabetes risk polymorphisms in Asian Indian Sikhs: PPARG2 (Pro12Ala), IGF2BP2, TCF7L2 and FTO variants confer a significant risk

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Background

          Recent genome-wide association (GWA) studies have identified several unsuspected genes associated with type 2 diabetes (T2D) with previously unknown functions. In this investigation, we have examined the role of 9 most significant SNPs reported in GWA studies: [peroxisome proliferator-activated receptor gamma 2 ( PPARG2; rs 1801282); insulin-like growth factor two binding protein 2 ( IGF2BP2; rs 4402960); cyclin-dependent kinase 5, a regulatory subunit-associated protein1-like 1 ( CDK5; rs7754840); a zinc transporter and member of solute carrier family 30 ( SLC30A8; rs13266634); a variant found near cyclin-dependent kinase inhibitor 2A ( CDKN2A; rs10811661); hematopoietically expressed homeobox ( HHEX; rs 1111875); transcription factor-7-like 2 ( TCF7L2; rs 10885409); potassium inwardly rectifying channel subfamily J member 11( KCNJ11; rs 5219); and fat mass obesity-associated gene ( FTO; rs 9939609)].

          Methods

          We genotyped these SNPs in a case-control sample of 918 individuals consisting of 532 T2D cases and 386 normal glucose tolerant (NGT) subjects of an Asian Sikh community from North India. We tested the association between T2D and each SNP using unconditional logistic regression before and after adjusting for age, gender, and other covariates. We also examined the impact of these variants on body mass index (BMI), waist to hip ratio (WHR), fasting insulin, and glucose and lipid levels using multiple linear regression analysis.

          Results

          Four of the nine SNPs revealed a significant association with T2D; PPARG2 (Pro12Ala) [odds ratio (OR) 0.12; 95% confidence interval (CI) (0.03–0.52); p = 0.005], IGF2BP2 [OR 1.37; 95% CI (1.04–1.82); p = 0.027], TCF7L2 [OR 1.64; 95% CI (1.20–2.24); p = 0.001] and FTO [OR 1.46; 95% CI (1.11–1.93); p = 0.007] after adjusting for age, sex and BMI. Multiple linear regression analysis revealed significant association of two of nine investigated loci with diabetes-related quantitative traits. The 'C' (risk) allele of CDK5 (rs 7754840) was significantly associated with decreased HDL-cholesterol levels in both NGT (p = 0.005) and combined (NGT and T2D) (0.005) groups. The less common 'C' (risk) allele of TCF7L2 (rs 10885409) was associated with increased LDL-cholesterol (p = 0.010) in NGT and total and LDL-cholesterol levels (p = 0.008; p = 0.003, respectively) in combined cohort.

          Conclusion

          To our knowledge, this is first study reporting the role of some recently emerged loci with T2D in a high risk population of Asian Indian origin. Further investigations are warranted to understand the pathway-based functional implications of these important loci in T2D pathophysiology in different ethnicities.

          Related collections

          Most cited references43

          • Record: found
          • Abstract: found
          • Article: not found

          A genome-wide association study identifies novel risk loci for type 2 diabetes.

          Type 2 diabetes mellitus results from the interaction of environmental factors with a combination of genetic variants, most of which were hitherto unknown. A systematic search for these variants was recently made possible by the development of high-density arrays that permit the genotyping of hundreds of thousands of polymorphisms. We tested 392,935 single-nucleotide polymorphisms in a French case-control cohort. Markers with the most significant difference in genotype frequencies between cases of type 2 diabetes and controls were fast-tracked for testing in a second cohort. This identified four loci containing variants that confer type 2 diabetes risk, in addition to confirming the known association with the TCF7L2 gene. These loci include a non-synonymous polymorphism in the zinc transporter SLC30A8, which is expressed exclusively in insulin-producing beta-cells, and two linkage disequilibrium blocks that contain genes potentially involved in beta-cell development or function (IDE-KIF11-HHEX and EXT2-ALX4). These associations explain a substantial portion of disease risk and constitute proof of principle for the genome-wide approach to the elucidation of complex genetic traits.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            The obesity-associated FTO gene encodes a 2-oxoglutarate-dependent nucleic acid demethylase.

            Variants in the FTO (fat mass and obesity associated) gene are associated with increased body mass index in humans. Here, we show by bioinformatics analysis that FTO shares sequence motifs with Fe(II)- and 2-oxoglutarate-dependent oxygenases. We find that recombinant murine Fto catalyzes the Fe(II)- and 2OG-dependent demethylation of 3-methylthymine in single-stranded DNA, with concomitant production of succinate, formaldehyde, and carbon dioxide. Consistent with a potential role in nucleic acid demethylation, Fto localizes to the nucleus in transfected cells. Studies of wild-type mice indicate that Fto messenger RNA (mRNA) is most abundant in the brain, particularly in hypothalamic nuclei governing energy balance, and that Fto mRNA levels in the arcuate nucleus are regulated by feeding and fasting. Studies can now be directed toward determining the physiologically relevant FTO substrate and how nucleic acid methylation status is linked to increased fat mass.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Newly identified loci that influence lipid concentrations and risk of coronary artery disease.

              To identify genetic variants influencing plasma lipid concentrations, we first used genotype imputation and meta-analysis to combine three genome-wide scans totaling 8,816 individuals and comprising 6,068 individuals specific to our study (1,874 individuals from the FUSION study of type 2 diabetes and 4,184 individuals from the SardiNIA study of aging-associated variables) and 2,758 individuals from the Diabetes Genetics Initiative, reported in a companion study in this issue. We subsequently examined promising signals in 11,569 additional individuals. Overall, we identify strongly associated variants in eleven loci previously implicated in lipid metabolism (ABCA1, the APOA5-APOA4-APOC3-APOA1 and APOE-APOC clusters, APOB, CETP, GCKR, LDLR, LPL, LIPC, LIPG and PCSK9) and also in several newly identified loci (near MVK-MMAB and GALNT2, with variants primarily associated with high-density lipoprotein (HDL) cholesterol; near SORT1, with variants primarily associated with low-density lipoprotein (LDL) cholesterol; near TRIB1, MLXIPL and ANGPTL3, with variants primarily associated with triglycerides; and a locus encompassing several genes near NCAN, with variants strongly associated with both triglycerides and LDL cholesterol). Notably, the 11 independent variants associated with increased LDL cholesterol concentrations in our study also showed increased frequency in a sample of coronary artery disease cases versus controls.
                Bookmark

                Author and article information

                Journal
                BMC Med Genet
                BMC Medical Genetics
                BioMed Central
                1471-2350
                2008
                3 July 2008
                : 9
                : 59
                Affiliations
                [1 ]Department of Pediatrics, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
                [2 ]Oklahoma Medical Research Foundation, Oklahoma City, OK, USA
                [3 ]Guru Nanak Dev University, Amritsar, Punjab, India
                [4 ]Hero DMC Heart Institute, Ludhiana, Punjab, India
                [5 ]All India Institute of Medical Sciences, New Delhi, India
                [6 ]Department of Human Genetics, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, PA, USA
                [7 ]Department of Pediatrics, Section of Genetics University of Oklahoma Health Sciences Center, 975 NE 10th, BRC-254A, Oklahoma City, OK – 73104, USA
                Article
                1471-2350-9-59
                10.1186/1471-2350-9-59
                2481250
                18598350
                cf71f89e-b938-4b71-acd5-8ec2854a7837
                Copyright © 2008 Sanghera et al; licensee BioMed Central Ltd.

                This is an Open Access article distributed under the terms of the Creative Commons Attribution License ( http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

                History
                : 21 December 2007
                : 3 July 2008
                Categories
                Research Article

                Genetics
                Genetics

                Comments

                Comment on this article