348
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Neutrophil Extracellular Traps Contain Calprotectin, a Cytosolic Protein Complex Involved in Host Defense against Candida albicans

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Neutrophils are the first line of defense at the site of an infection. They encounter and kill microbes intracellularly upon phagocytosis or extracellularly by degranulation of antimicrobial proteins and the release of Neutrophil Extracellular Traps (NETs). NETs were shown to ensnare and kill microbes. However, their complete protein composition and the antimicrobial mechanism are not well understood. Using a proteomic approach, we identified 24 NET-associated proteins. Quantitative analysis of these proteins and high resolution electron microscopy showed that NETs consist of modified nucleosomes and a stringent selection of other proteins. In contrast to previous results, we found several NET proteins that are cytoplasmic in unstimulated neutrophils. We demonstrated that of those proteins, the antimicrobial heterodimer calprotectin is released in NETs as the major antifungal component. Absence of calprotectin in NETs resulted in complete loss of antifungal activity in vitro. Analysis of three different Candida albicans in vivo infection models indicated that NET formation is a hitherto unrecognized route of calprotectin release. By comparing wild-type and calprotectin-deficient animals we found that calprotectin is crucial for the clearance of infection. Taken together, the present investigations confirmed the antifungal activity of calprotectin in vitro and, moreover, demonstrated that it contributes to effective host defense against C. albicans in vivo. We showed for the first time that a proportion of calprotectin is bound to NETs in vitro and in vivo.

          Author Summary

          Neutrophils are phagocytes that disarm and kill microbes by engulfing them. Less well characterized than their phagocytic killing mechanisms is how neutrophils cope with microbes that are too large to be internalized. Notably, neutrophils may also kill or inhibit extracellularly by releasing Neutrophil Extracellular Traps (NETs). NETs are fibers made of chromatin (histones and DNA) decorated with antimicrobial proteins. NETs ensnare and kill microbes, such as bacteria, fungi and parasites. We wanted to find out if and how NETs control pathogenic fungi that can form large filaments such as Candida albicans. We purified all NET-bound proteins and identified 24 of them. We found that calprotectin is the major antifungal NET-bound protein. Calprotectin was known to be antimicrobial but here we demonstrate that NET formation is a novel release mechanism for this cytoplasmic protein. The NET matrix comes in close contact with the fungi and the high local concentration of calprotectin in the NETs supports the antifungal activity. Furthermore, in mice calprotectin is essential for an efficient antifungal response to Candida albicans in skin, lung and systemic infections. In tissue sections from these animals we detected NETs and NET-associated calprotectin. Thus, our study gives more insights into mechanisms how the immune system copes with fungal pathogens.

          Related collections

          Most cited references48

          • Record: found
          • Abstract: found
          • Article: not found

          Platelet TLR4 activates neutrophil extracellular traps to ensnare bacteria in septic blood.

          It has been known for many years that neutrophils and platelets participate in the pathogenesis of severe sepsis, but the inter-relationship between these players is completely unknown. We report several cellular events that led to enhanced trapping of bacteria in blood vessels: platelet TLR4 detected TLR4 ligands in blood and induced platelet binding to adherent neutrophils. This led to robust neutrophil activation and formation of neutrophil extracellular traps (NETs). Plasma from severely septic humans also induced TLR4-dependent platelet-neutrophil interactions, leading to the production of NETs. The NETs retained their integrity under flow conditions and ensnared bacteria within the vasculature. The entire event occurred primarily in the liver sinusoids and pulmonary capillaries, where NETs have the greatest capacity for bacterial trapping. We propose that platelet TLR4 is a threshold switch for this new bacterial trapping mechanism in severe sepsis.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Netting neutrophils in autoimmune small-vessel vasculitis.

            Small-vessel vasculitis (SVV) is a chronic autoinflammatory condition linked to antineutrophil cytoplasm autoantibodies (ANCAs). Here we show that chromatin fibers, so-called neutrophil extracellular traps (NETs), are released by ANCA-stimulated neutrophils and contain the targeted autoantigens proteinase-3 (PR3) and myeloperoxidase (MPO). Deposition of NETs in inflamed kidneys and circulating MPO-DNA complexes suggest that NET formation triggers vasculitis and promotes the autoimmune response against neutrophil components in individuals with SVV.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Virulence factors of Candida albicans

              Candidiasis is a common infection of the skin, oral cavity and esophagus, gastrointestinal tract, vagina and vascular system of humans. Although most infections occur in patients who are immunocompromised or debilitated in some other way, the organism most often responsible for disease, Candida albicans, expresses several virulence factors that contribute to pathogenesis. These factors include host recognition biomolecules (adhesins), morphogenesis (the reversible transition between unicellular yeast cells and filamentous, growth forms), secreted aspartyl proteases and phospholipases. Additionally, 'phenotypic switching' is accompanied by changes in antigen expression, colony morphology and tissue affinities in C. albicans and several other Candida spp. Switching might provide cells with a flexibility that results in the adaptation of the organism to the hostile conditions imposed not only by the host but also by the physician treating the infection.
                Bookmark

                Author and article information

                Contributors
                Role: Editor
                Journal
                PLoS Pathog
                plos
                plospath
                PLoS Pathogens
                Public Library of Science (San Francisco, USA )
                1553-7366
                1553-7374
                October 2009
                October 2009
                30 October 2009
                : 5
                : 10
                : e1000639
                Affiliations
                [1 ]Department for Cellular Microbiology, Max Planck Institute for Infection Biology, Berlin, Germany
                [2 ]Protein Analysis Core Facility, Max Planck Institute for Infection Biology, Berlin, Germany
                [3 ]Microscopy Core Facility, Max Planck Institute for Infection Biology, Berlin, Germany
                [4 ]Institute for Immunology, Münster University, Münster, Germany
                [5 ]Institute for Molecular Virology, Center for Molecular Biology of Inflammation, Münster University, Münster, Germany
                UMass Medical Center, United States of America
                Author notes
                [¤]

                Current address: Molecular Biology and MIMS, Umeå University, Umeå, Sweden

                Conceived and designed the experiments: CFU VB PRJ AZ. Performed the experiments: CFU DE MS UAA CG VB. Analyzed the data: CFU VB PRJ AZ. Contributed reagents/materials/analysis tools: WN. Wrote the paper: CFU VB AZ.

                Article
                09-PLPA-RA-0900R3
                10.1371/journal.ppat.1000639
                2763347
                19876394
                cf7524ac-f62a-4521-841a-60408e45350f
                Urban et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
                History
                : 5 June 2009
                : 30 September 2009
                Page count
                Pages: 18
                Categories
                Research Article
                Immunology/Immunity to Infections
                Immunology/Innate Immunity
                Infectious Diseases/Fungal Infections

                Infectious disease & Microbiology
                Infectious disease & Microbiology

                Comments

                Comment on this article