29
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Minimum information reporting in bio–nano experimental literature

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          <p class="first" id="P1">Studying the interactions between nanoengineered materials and biological systems plays a vital role in the development of biological applications of nanotechnology and the improvement of our fundamental understanding of the bio–nano interface. A significant barrier to progress in this multidisciplinary area is the variability of published literature with regards to characterisations performed and experimental details reported. Herein, we suggest a “minimum information standard” for experimental literature investigating bio–nano interactions. This standard consists of specific components to be reported, divided into three categories: material characterisation, biological characterisation, and details of experimental protocols. Our intention is for these proposed standards to improve reproducibility, increase quantitative comparison of bio-nano materials, and facilitate meta analyses and <i>in silico</i> modelling. </p>

          Related collections

          Most cited references55

          • Record: found
          • Abstract: not found
          • Article: not found

          Analysis of nanoparticle delivery to tumours

            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Nanoparticle-mediated cellular response is size-dependent.

            Nanostructures of different sizes, shapes and material properties have many applications in biomedical imaging, clinical diagnostics and therapeutics. In spite of what has been achieved so far, a complete understanding of how cells interact with nanostructures of well-defined sizes, at the molecular level, remains poorly understood. Here we show that gold and silver nanoparticles coated with antibodies can regulate the process of membrane receptor internalization. The binding and activation of membrane receptors and subsequent protein expression strongly depend on nanoparticle size. Although all nanoparticles within the 2-100 nm size range were found to alter signalling processes essential for basic cell functions (including cell death), 40- and 50-nm nanoparticles demonstrated the greatest effect. These results show that nanoparticles should no longer be viewed as simple carriers for biomedical applications, but can also play an active role in mediating biological effects. The findings presented here may assist in the design of nanoscale delivery and therapeutic systems and provide insights into nanotoxicity.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Cellular uptake of nanoparticles: journey inside the cell

              Cellular association and trafficking of nanoscale materials enables us to both understand and exploit context-dependent phenomena in various disease states, their pathogenesis, and potential therapeutic approaches. Nanoscale materials are increasingly found in consumer goods, electronics, and pharmaceuticals. While these particles interact with the body in myriad ways, their beneficial and/or deleterious effects ultimately arise from interactions at the cellular and subcellular level. Nanoparticles (NPs) can modulate cell fate, induce or prevent mutations, initiate cell–cell communication, and modulate cell structure in a manner dictated largely by phenomena at the nano–bio interface. Recent advances in chemical synthesis have yielded new nanoscale materials with precisely defined biochemical features, and emerging analytical techniques have shed light on nuanced and context-dependent nano-bio interactions within cells. In this review, we provide an objective and comprehensive account of our current understanding of the cellular uptake of NPs and the underlying parameters controlling the nano-cellular interactions, along with the available analytical techniques to follow and track these processes.
                Bookmark

                Author and article information

                Journal
                Nature Nanotechnology
                Nature Nanotech
                Springer Nature America, Inc
                1748-3387
                1748-3395
                September 6 2018
                Article
                10.1038/s41565-018-0246-4
                6150419
                30190620
                cf8a391a-4d3a-46f8-874f-a14926e38c4a
                © 2018

                http://www.springer.com/tdm

                History

                Comments

                Comment on this article