12
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Niosomes as Nanoparticular Drug Carriers: Fundamentals and Recent Applications

      , , , ,
      Journal of Nanomaterials
      Hindawi Limited

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Drug delivery systems are defined as formulations aiming for transportation of a drug to the desired area of action within the body. The basic component of drug delivery systems is an appropriate carrier that protects the drug from rapid degradation or clearance and thereby enhances drug concentration in target tissues. Based on their biodegradable, biocompatible, and nonimmunogenic structure, niosomes are promising drug carriers that are formed by self-association of nonionic surfactants and cholesterol in an aqueous phase. In recent years, numerous research articles have been published in scientific journals reporting the potential of niosomes to serve as a carrier for the delivery of different types of drugs. The present review describes preparation methods, characterization techniques, and recent studies on niosomal drug delivery systems and also gives up to date information regarding recent applications of niosomes in drug delivery.

          Related collections

          Most cited references89

          • Record: found
          • Abstract: found
          • Article: not found

          Nano-niosomes as nanoscale drug delivery systems: an illustrated review.

          The field of nanochemistry research has shown a great progress in the developing of novel nanocarriers as potential drug delivery systems. Niosome is a class of molecular cluster formed by self-association of non-ionic surfactants in an aqueous phase. The unique structure of niosome presents an effective novel drug delivery system (NDDS) with ability of loading both hydrophilic and lipophilic drugs. Numerous research articles have been published in scientific journals, reporting valuable results of individual case studies in this context. However, surveying and discussing the recent, rapidly growing reported studies along with their theoretical principals is required for the fully understanding and exploring the great potential of this approach. To this aim, we have provided an illustrated and comprehensive study from the view of a supramolecular chemist, interested in the synthesizing and studying chemical aggregates on the nanoscale for the development of nanotechnological clusters including niosomes. First, a connectional review of the molecular structure and physicochemical properties of niosome forming non-ionic surfactants and additive agents have been discussed. Second, a systematic survey of niosome preparation and loading methods, administration routes, characterization of niosomes, their toxicity studies and mechanism of drug release; used in recent articles have been performed. Copyright © 2014 Elsevier B.V. All rights reserved.
            Bookmark
            • Record: found
            • Abstract: not found
            • Article: not found

            Non-ionic surfactant based vesicles (niosomes) in drug delivery

              Bookmark
              • Record: found
              • Abstract: not found
              • Article: not found

              Nonionic surfactant vesicular systems for effective drug delivery—an overview

                Bookmark

                Author and article information

                Journal
                Journal of Nanomaterials
                Journal of Nanomaterials
                Hindawi Limited
                1687-4110
                1687-4129
                2016
                2016
                : 2016
                :
                : 1-13
                Article
                10.1155/2016/7372306
                cf985232-5828-4780-b913-7a61562395cc
                © 2016

                http://creativecommons.org/licenses/by/4.0/

                History

                Comments

                Comment on this article