55
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Living on Three Time Scales: The Dynamics of Plasma Cell and Antibody Populations Illustrated for Hepatitis A Virus

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Understanding the mechanisms involved in long-term persistence of humoral immunity after natural infection or vaccination is challenging and crucial for further research in immunology, vaccine development as well as health policy. Long-lived plasma cells, which have recently been shown to reside in survival niches in the bone marrow, are instrumental in the process of immunity induction and persistence. We developed a mathematical model, assuming two antibody-secreting cell subpopulations (short- and long-lived plasma cells), to analyze the antibody kinetics after HAV-vaccination using data from two long-term follow-up studies. Model parameters were estimated through a hierarchical nonlinear mixed-effects model analysis. Long-term individual predictions were derived from the individual empirical parameters and were used to estimate the mean time to immunity waning. We show that three life spans are essential to explain the observed antibody kinetics: that of the antibodies (around one month), the short-lived plasma cells (several months) and the long-lived plasma cells (decades). Although our model is a simplified representation of the actual mechanisms that govern individual immune responses, the level of agreement between long-term individual predictions and observed kinetics is reassuringly close. The quantitative assessment of the time scales over which plasma cells and antibodies live and interact provides a basis for further quantitative research on immunology, with direct consequences for understanding the epidemiology of infectious diseases, and for timing serum sampling in clinical trials of vaccines.

          Author Summary

          Recent studies evidenced the existence of long-lived plasma-cells which could play a major role in the long-term persistence of antibodies after infection or vaccination. A mathematical model, accounting for two plasma-cells populations (short and long-lived), was developed to analyze data from two long-term follow-up studies in patients vaccinated with hepatitis A inactivated vaccines. Parameter estimates confirmed the importance of three time scales to explain the decay of antibody levels: the antibodies lifespan (around one month), the short-lived plasma cells lifespan (several months) and the long-lived plasma cells lifespan (decades). This study also highlighted the need of more frequent observations during the first year post-vaccination to estimate accurately the different parameters governing the long-term antibody dynamics.

          Related collections

          Most cited references42

          • Record: found
          • Abstract: found
          • Book: not found

          An Introduction to the Bootstrap

          Statistics is a subject of many uses and surprisingly few effective practitioners. The traditional road to statistical knowledge is blocked, for most, by a formidable wall of mathematics. The approach in An Introduction to the Bootstrap avoids that wall. It arms scientists and engineers, as well as statisticians, with the computational techniques they need to analyze and understand complicated data sets.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Maintenance of serological memory by polyclonal activation of human memory B cells.

            Production of antibodies can last for a lifetime, through mechanisms that remain poorly understood. Here, we show that human memory B lymphocytes proliferate and differentiate into plasma cells in response to polyclonal stimuli, such as bystander T cell help and CpG DNA. Furthermore, plasma cells secreting antibodies to recall antigens are produced in vivo at levels proportional to the frequency of specific memory B cells, even several years after antigenic stimulation. Although antigen boosting leads to a transient increase in specific antibody levels, ongoing polyclonal activation of memory B cells offers a means to maintain serological memory for a human lifetime.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Duration of humoral immunity to common viral and vaccine antigens.

              Maintenance of long-term antibody responses is critical for protective immunity against many pathogens. However, the duration of humoral immunity and the role played by memory B cells remain poorly defined. We performed a longitudinal analysis of antibody titers specific for viral antigens (vaccinia, measles, mumps, rubella, varicella-zoster virus, and Epstein-Barr virus) and nonreplicating antigens (tetanus and diphtheria) in 45 subjects for a period of up to 26 years. In addition, we measured antigen-specific memory B cells by means of limiting-dilution analysis, and we compared memory B-cell frequencies to their corresponding serum antibody levels. Antiviral antibody responses were remarkably stable, with half-lives ranging from an estimated 50 years for varicella-zoster virus to more than 200 years for other viruses such as measles and mumps. Antibody responses against tetanus and diphtheria antigens waned more quickly, with estimated half-lives of 11 years and 19 years, respectively. B-cell memory was long-lived, but there was no significant correlation between peripheral memory B-cell numbers and antibody levels for five of the eight antigens tested. These studies provide quantitative analysis of serologic memory for multiple antigens in subjects followed longitudinally over the course of more than one decade. In cases in which multiple exposures or repeated vaccinations were common, memory B-cell numbers did not correlate with antibody titers. This finding suggests that peripheral memory B cells and antibody-secreting plasma cells may represent independently regulated cell populations and may play different roles in the maintenance of protective immunity. Copyright 2007 Massachusetts Medical Society.
                Bookmark

                Author and article information

                Contributors
                Role: Editor
                Journal
                PLoS Comput Biol
                plos
                ploscomp
                PLoS Computational Biology
                Public Library of Science (San Francisco, USA )
                1553-734X
                1553-7358
                March 2012
                March 2012
                1 March 2012
                : 8
                : 3
                : e1002418
                Affiliations
                [1 ]Centre for Health Economics Research and Modelling of Infectious Diseases (CHERMID), Vaccine & Infectious Disease Institute (VAXINFECTIO), University of Antwerp, Antwerp, Belgium
                [2 ]The SYMBIOS Center, Division of Mathematics, University of Dundee, Dundee, United Kingdom
                [3 ]Interuniversity Institute of Biostatistics and Statistical Bioinformatics, Hasselt University, Diepenbeek, Belgium
                [4 ]Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
                Imperial College London, United Kingdom
                Author notes

                Conceived and designed the experiments: MA OL PB NH. Performed the experiments: MA OL JZM NH. Analyzed the data: MA OL JZM NH. Wrote the paper: MA OL JZM BO PB NH. Interpreted the results: MA OL JZM BO PB NH.

                Article
                PCOMPBIOL-D-11-01013
                10.1371/journal.pcbi.1002418
                3291529
                22396639
                cf9ea2d8-75e3-4769-ac1f-2dc1be74a72b
                Andraud et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
                History
                : 13 July 2011
                : 23 January 2012
                Page count
                Pages: 8
                Categories
                Research Article
                Biology
                Immunology
                Immune Cells
                Immunity
                Medicine
                Infectious Diseases

                Quantitative & Systems biology
                Quantitative & Systems biology

                Comments

                Comment on this article