10
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Amelioration of muscle wasting by glucagon‐like peptide‐1 receptor agonist in muscle atrophy

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Background

          Skeletal muscle atrophy is defined as a reduction of muscle mass caused by excessive protein degradation. However, the development of therapeutic interventions is still in an early stage. Although glucagon‐like peptide‐1 receptor (GLP‐1R) agonists, such as exendin‐4 (Ex‐4) and dulaglutide, are widely used for the treatment of diabetes, their effects on muscle pathology are unknown. In this study, we investigated the therapeutic potential of GLP‐1R agonist for muscle wasting and the mechanisms involved.

          Methods

          Mouse C2C12 myotubes were used to evaluate the in vitro effects of Ex‐4 in the presence or absence of dexamethasone (Dex) on the regulation of the expression of muscle atrophic factors and the underlying mechanisms using various pharmacological inhibitors. In addition, we investigated the in vivo therapeutic effect of Ex‐4 in a Dex‐induced mouse muscle atrophy model (20 mg/kg/day i.p.) followed by injection of Ex‐4 (100 ng/day i.p.) for 12 days and chronic kidney disease (CKD)‐induced muscle atrophy model. Furthermore, we evaluated the effect of a long‐acting GLP‐1R agonist by treatment of dulaglutide (1 mg/kg/week s.c.) for 3 weeks, in DBA/2J‐mdx mice, a Duchenne muscular dystrophy model.

          Results

          Ex‐4 suppressed the expression of myostatin (MSTN) and muscle atrophic factors such as F‐box only protein 32 (atrogin‐1) and muscle RING‐finger protein‐1 (MuRF‐1) in Dex‐treated C2C12 myotubes. The suppression effect was via protein kinase A and protein kinase B signalling pathways through GLP‐1R. In addition, Ex‐4 treatment inhibited glucocorticoid receptor (GR) translocation by up‐regulating the proteins of GR inhibitory complexes. In a Dex‐induced muscle atrophy model, Ex‐4 ameliorated muscle atrophy by suppressing muscle atrophic factors and enhancing myogenic factors (MyoG and MyoD), leading to increased muscle mass and function. In the CKD muscle atrophy model, Ex‐4 also increased muscle mass, myofiber size, and muscle function. In addition, treatment with a long‐acting GLP‐1R agonist, dulaglutide, recovered muscle mass and function in DBA/2J‐mdx mice.

          Conclusions

          GLP‐1R agonists ameliorate muscle wasting by suppressing MSTN and muscle atrophic factors and enhancing myogenic factors through GLP‐1R‐mediated signalling pathways. These novel findings suggest that activating GLP‐1R signalling may be useful for the treatment of atrophy‐related muscular diseases.

          Related collections

          Most cited references66

          • Record: found
          • Abstract: found
          • Article: not found

          The biology of incretin hormones.

          Gut peptides, exemplified by glucagon-like peptide-1 (GLP-1) and glucose-dependent insulinotropic polypeptide (GIP) are secreted in a nutrient-dependent manner and stimulate glucose-dependent insulin secretion. Both GIP and GLP-1 also promote beta cell proliferation and inhibit apoptosis, leading to expansion of beta cell mass. GLP-1, but not GIP, controls glycemia via additional actions on glucose sensors, inhibition of gastric emptying, food intake and glucagon secretion. Furthermore, GLP-1, unlike GIP, potently stimulates insulin secretion and reduces blood glucose in human subjects with type 2 diabetes. This article summarizes current concepts of incretin action and highlights the potential therapeutic utility of GLP-1 receptor agonists and dipeptidyl peptidase-4 (DPP-4) inhibitors for the treatment of type 2 diabetes.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Dystrophin protects the sarcolemma from stresses developed during muscle contraction.

            The protein dystrophin, normally found on the cytoplasmic surface of skeletal muscle cell membranes, is absent in patients with Duchenne muscular dystrophy as well as mdx (X-linked muscular dystrophy) mice. Although its primary structure has been determined, the precise functional role of dystrophin remains the subject of speculation. In the present study, we demonstrate that dystrophin-deficient muscle fibers of the mdx mouse exhibit an increased susceptibility to contraction-induced sarcolemmal rupture. The level of sarcolemmal damage is directly correlated with the magnitude of mechanical stress placed upon the membrane during contraction rather than the number of activations of the muscle. These findings strongly support the proposition that the primary function of dystrophin is to provide mechanical reinforcement to the sarcolemma and thereby protect it from the membrane stresses developed during muscle contraction. Furthermore, the methodology used in this study should prove useful in assessing the efficacy of dystrophin gene therapy in the mdx mouse.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              Ethical guidelines for publishing in the journal of cachexia, sarcopenia and muscle: update 2017

              Abstract This article details an updated version of the principles of ethical authorship and publishing in the Journal of Cachexia, Sarcopenia and Muscle (JCSM). At the time of submission to JCSM, the corresponding author, on behalf of all co‐authors, needs to certify adherence to these principles. The principles are as follows: All authors listed on a manuscript considered for publication have approved its submission and (if accepted) publication as provided to JCSM. No person who has a right to be recognized as author has been omitted from the list of authors on the submitted manuscript. Each author has made a material and independent contribution to the work submitted for publication. The submitted work is original and is neither under consideration elsewhere nor that it has been published previously in whole or in part other than in abstract form. All authors certify that the work is original and does not contain excessive overlap with prior or contemporaneous publication elsewhere, and where the publication reports on cohorts, trials, or data that have been reported on before these other publications must be referenced. All original research work has been approved by the relevant bodies such as institutional review boards or ethics committees. All conflicts of interest, financial or otherwise, that may affect the authors' ability to present data objectively, and relevant sources of funding have been duly declared in the manuscript. The manuscript in its published form will be maintained on the servers of JCSM as a valid publication only as long as all statements in the guidelines on ethical publishing remain true. If any of the aforementioned statements ceases to be true, the authors have a duty to notify the Editors of JCSM as soon as possible so that the available information regarding the published article can be updated and/or the manuscript can be withdrawn.
                Bookmark

                Author and article information

                Contributors
                hsjun@gachon.ac.kr
                Journal
                J Cachexia Sarcopenia Muscle
                J Cachexia Sarcopenia Muscle
                10.1007/13539.2190-6009
                JCSM
                Journal of Cachexia, Sarcopenia and Muscle
                John Wiley and Sons Inc. (Hoboken )
                2190-5991
                2190-6009
                24 April 2019
                August 2019
                : 10
                : 4 ( doiID: 10.1002/jcsm.v10.4 )
                : 903-918
                Affiliations
                [ 1 ] College of Pharmacy and Gachon Institute of Pharmaceutical Science Gachon University Yeonsu‐ku Incheon Korea
                [ 2 ] Lee Gil Ya Cancer and Diabetes Institute Gachon University Incheon Korea
                [ 3 ] Gachon Medical Research Institute Gil Hospital Incheon Korea
                Author notes
                [*] [* ]Correspondence to: Hee‐Sook Jun, College of Pharmacy, Gachon University, 7‐45 Songdo‐dong, Yeonsu‐ku, Incheon, 406‐840, Korea. Tel: +82‐32‐899‐6056, Fax: +82‐32‐899‐6057; Email: hsjun@ 123456gachon.ac.kr
                Article
                JCSM12434 JCSM-D-18-00358
                10.1002/jcsm.12434
                6711418
                31020810
                cfa0dc09-76d7-465e-a570-9a7ed907284d
                © 2019 The Authors Journal of Cachexia, Sarcopenia and Muscle published by John Wiley & Sons Ltd on behalf of Society on Sarcopenia, Cachexia and Wasting Disorders

                This is an open access article under the terms of the http://creativecommons.org/licenses/by-nc/4.0/ License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited and is not used for commercial purposes.

                History
                : 04 November 2018
                : 21 March 2019
                Page count
                Figures: 7, Tables: 1, Pages: 16, Words: 7482
                Funding
                Funded by: National Research Foundation of Korea
                Award ID: 2017R1D1A1B03036210
                Funded by: Ministry of Health and Welfare, Republic of Korea
                Award ID: HI14C1135
                Categories
                Original Article
                Original Articles
                Custom metadata
                2.0
                jcsm12434
                August 2019
                Converter:WILEY_ML3GV2_TO_NLMPMC version:5.6.7 mode:remove_FC converted:27.08.2019

                Orthopedics
                skeletal muscle atrophy,glp‐1r agonists,dexamethasone,glucocorticoid receptor,chronic kidney disease,duchenne muscular dystrophy

                Comments

                Comment on this article