24
views
0
recommends
+1 Recommend
1 collections
    0
    shares

      To submit your manuscript to JMIR, please click here

      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Medical Correctness and User Friendliness of Available Apps for Cardiopulmonary Resuscitation: Systematic Search Combined With Guideline Adherence and Usability Evaluation

      research-article

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Background

          In case of a cardiac arrest, start of cardiopulmonary resuscitation by a bystander before the arrival of the emergency personnel increases the probability of survival. However, the steps of high-quality resuscitation are not known by every bystander or might be forgotten in this complex and time-critical situation. Mobile phone apps offering real-time step-by-step instructions might be a valuable source of information.

          Objective

          The aim of this study was to examine mobile phone apps offering real-time instructions in German or English in case of a cardiac arrest, to evaluate their adherence to current resuscitation guidelines, and to test their usability.

          Methods

          Our 3-step approach combines a systematic review of currently available apps guiding a medical layperson through a resuscitation situation, an adherence testing to medical guidelines, and a usability evaluation of the determined apps. The systematic review followed an adapted preferred reporting items for systematic reviews and meta-analyses flow diagram, the guideline adherence was tested by applying a conformity checklist, and the usability was evaluated by a group of mobile phone frequent users and emergency physicians with the system usability scale (SUS) tool.

          Results

          The structured search in Google Play Store and Apple App Store resulted in 3890 hits. After removing redundant ones, 2640 hits were checked for fulfilling the inclusion criteria. As a result, 34 apps meeting all inclusion criteria were identified. These included apps were analyzed to determine medical accuracy as defined by the European Resuscitation Council’s guidelines. Only 5 out of 34 apps (15%, 5/34) fulfilled all criteria chosen to determine guideline adherence. All other apps provided no or wrong information on at least one relevant topic. The usability of 3 apps was evaluated by 10 mobile phone frequent users and 9 emergency physicians. Of these 3 apps, solely the app “HELP Notfall” (median=87.5) was ranked with an SUS score above the published average of 68. This app was rated significantly superior to “HAMBURG SCHOCKT” (median=55; asymptotic Wilcoxon test: z=−3.63, P<.01, n=19) and “Mein DRK” (median=32.5; asymptotic Wilcoxon test: z=−3.83, P<.01, n=19).

          Conclusions

          Implementing a systematic quality control for health-related apps should be enforced to ensure that all products provide medically accurate content and sufficient usability in complex situations. This is of exceptional importance for apps dealing with the treatment of life-threatening events such as cardiac arrest.

          Related collections

          Most cited references50

          • Record: found
          • Abstract: found
          • Article: not found

          Early cardiopulmonary resuscitation in out-of-hospital cardiac arrest.

          Three million people in Sweden are trained in cardiopulmonary resuscitation (CPR). Whether this training increases the frequency of bystander CPR or the survival rate among persons who have out-of-hospital cardiac arrests has been questioned.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Mobile medical and health apps: state of the art, concerns, regulatory control and certification

            This paper examines the state of the art in mobile clinical and health-related apps. A 2012 estimate puts the number of health-related apps at no fewer than 40,000, as healthcare professionals and consumers continue to express concerns about the quality of many apps, calling for some form of app regulatory control or certification to be put in place. We describe the range of apps on offer as of 2013, and then present a brief survey of evaluation studies of medical and health-related apps that have been conducted to date, covering a range of clinical disciplines and topics. Our survey includes studies that highlighted risks, negative issues and worrying deficiencies in existing apps. We discuss the concept of ‘apps as a medical device’ and the relevant regulatory controls that apply in USA and Europe, offering examples of apps that have been formally approved using these mechanisms. We describe the online Health Apps Library run by the National Health Service in England and the calls for a vetted medical and health app store. We discuss the ingredients for successful apps beyond the rather narrow definition of ‘apps as a medical device’. These ingredients cover app content quality, usability, the need to match apps to consumers’ general and health literacy levels, device connectivity standards (for apps that connect to glucometers, blood pressure monitors, etc.), as well as app security and user privacy. ‘Happtique Health App Certification Program’ (HACP), a voluntary app certification scheme, successfully captures most of these desiderata, but is solely focused on apps targeting the US market. HACP, while very welcome, is in ways reminiscent of the early days of the Web, when many “similar” quality benchmarking tools and codes of conduct for information publishers were proposed to appraise and rate online medical and health information. It is probably impossible to rate and police every app on offer today, much like in those early days of the Web, when people quickly realised the same regarding informational Web pages. The best first line of defence was, is, and will always be to educate consumers regarding the potentially harmful content of (some) apps.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              Mobile Applications for Diabetics: A Systematic Review and Expert-Based Usability Evaluation Considering the Special Requirements of Diabetes Patients Age 50 Years or Older

              Background A multitude of mhealth (mobile health) apps have been developed in recent years to support effective self-management of patients with diabetes mellitus type 1 or 2. Objective We carried out a systematic review of all currently available diabetes apps for the operating systems iOS and Android. We considered the number of newly released diabetes apps, range of functions, target user groups, languages, acquisition costs, user ratings, available interfaces, and the connection between acquisition costs and user ratings. Additionally, we examined whether the available applications serve the special needs of diabetes patients aged 50 or older by performing an expert-based usability evaluation. Methods We identified relevant keywords, comparative categories, and their specifications. Subsequently, we performed the app review based on the information given in the Google Play Store, the Apple App Store, and the apps themselves. In addition, we carried out an expert-based usability evaluation based on a representative 10% sample of diabetes apps. Results In total, we analyzed 656 apps finding that 355 (54.1%) offered just one function and 348 (53.0%) provided a documentation function. The dominating app language was English (85.4%, 560/656), patients represented the main user group (96.0%, 630/656), and the analysis of the costs revealed a trend toward free apps (53.7%, 352/656). The median price of paid apps was €1.90. The average user rating was 3.6 stars (maximum 5). Our analyses indicated no clear differences in the user rating between free and paid apps. Only 30 (4.6%) of the 656 available diabetes apps offered an interface to a measurement device. We evaluated 66 apps within the usability evaluation. On average, apps were rated best regarding the criterion “comprehensibility” (4.0 out of 5.0), while showing a lack of “fault tolerance” (2.8 out of 5.0). Of the 66 apps, 48 (72.7%) offered the ability to read the screen content aloud. The number of functions was significantly negative correlated with usability. The presence of documentation and analysis functions reduced the usability score significantly by 0.36 and 0.21 points. Conclusions A vast number of diabetes apps already exist, but the majority offer similar functionalities and combine only one to two functions in one app. Patients and physicians alike should be involved in the app development process to a greater extent. We expect that the data transmission of health parameters to physicians will gain more importance in future applications. The usability of diabetes apps for patients aged 50 or older was moderate to good. But this result applied mainly to apps offering a small range of functions. Multifunctional apps performed considerably worse in terms of usability. Moreover, the presence of a documentation or analysis function resulted in significantly lower usability scores. The operability of accessibility features for diabetes apps was quite limited, except for the feature “screen reader”.
                Bookmark

                Author and article information

                Contributors
                Journal
                JMIR Mhealth Uhealth
                JMIR Mhealth Uhealth
                JMU
                JMIR mHealth and uHealth
                JMIR Publications (Toronto, Canada )
                2291-5222
                November 2018
                06 November 2018
                : 6
                : 11
                : e190
                Affiliations
                [1 ] Department of Anaesthesiology University Medicine Greifswald Greifswald Germany
                Author notes
                Corresponding Author: Bibiana Metelmann bibiana.metelmann@ 123456uni-greifswald.de
                Author information
                http://orcid.org/0000-0003-2090-7358
                http://orcid.org/0000-0002-6145-9021
                http://orcid.org/0000-0001-8191-8777
                http://orcid.org/0000-0003-2905-0362
                http://orcid.org/0000-0002-6530-0923
                Article
                v6i11e190
                10.2196/mhealth.9651
                6246966
                30401673
                cfd24fab-6d21-4584-87d9-5c0f073445fd
                ©Bibiana Metelmann, Camilla Metelmann, Louisa Schuffert, Klaus Hahnenkamp, Peter Brinkrolf. Originally published in JMIR Mhealth and Uhealth (http://mhealth.jmir.org), 06.11.2018.

                This is an open-access article distributed under the terms of the Creative Commons Attribution License ( https://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work, first published in JMIR mhealth and uhealth, is properly cited. The complete bibliographic information, a link to the original publication on http://mhealth.jmir.org/.as well as this copyright and license information must be included.

                History
                : 13 December 2017
                : 20 March 2018
                : 15 May 2018
                : 9 August 2018
                Categories
                Original Paper
                Original Paper

                mhealth,resuscitation,review,guidelines,mobile phones,health care information systems,health informatics

                Comments

                Comment on this article