13
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      γ-Irradiation Enhances Apoptosis Induced by Cannabidiol, a Non-psychotropic Cannabinoid, in Cultured HL-60 Myeloblastic Leukemia Cells

      , , , , ,
      Leukemia & Lymphoma
      Informa UK Limited

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Two non-psychotropic cannabinoids, cannabidiol (CBD) and cannabidiol-dimethylheptyl (CBD-DMH), induced apoptosis in a human acute myeloid leukemia (AML) HL-60 cell line. Apoptosis was determined by staining with bisBenzimide and propidium iodide. A dose dependent increase of apoptosis was noted, reaching 61 and 43% with 8 microg/ml CBD and 15 microg/ml CBD-DMH, respectively, after a 24 h treatment. Prior exposure of the cells to gamma-irradiation (800 cGy) markedly enhanced apoptosis, reaching values of 93 and 95%, respectively. Human monocytes from normal individuals were resistant to either cannabinoids or gamma-irradiation. Caspase-3 activation was observed after the cannabinoid treatment, and may represent a mechanism for the apoptosis. Our data suggest a possible new approach to treatment of AML.

          Related collections

          Most cited references25

          • Record: found
          • Abstract: not found
          • Article: not found

          Isolation, Structure, and Partial Synthesis of an Active Constituent of Hashish

            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Anandamide induces apoptosis in human cells via vanilloid receptors. Evidence for a protective role of cannabinoid receptors.

            The endocannabinoid anandamide (AEA) is shown to induce apoptotic bodies formation and DNA fragmentation, hallmarks of programmed cell death, in human neuroblastoma CHP100 and lymphoma U937 cells. RNA and protein synthesis inhibitors like actinomycin D and cycloheximide reduced to one-fifth the number of apoptotic bodies induced by AEA, whereas the AEA transporter inhibitor AM404 or the AEA hydrolase inhibitor ATFMK significantly increased the number of dying cells. Furthermore, specific antagonists of cannabinoid or vanilloid receptors potentiated or inhibited cell death induced by AEA, respectively. Other endocannabinoids such as 2-arachidonoylglycerol, linoleoylethanolamide, oleoylethanolamide, and palmitoylethanolamide did not promote cell death under the same experimental conditions. The formation of apoptotic bodies induced by AEA was paralleled by increases in intracellular calcium (3-fold over the controls), mitochondrial uncoupling (6-fold), and cytochrome c release (3-fold). The intracellular calcium chelator EGTA-AM reduced the number of apoptotic bodies to 40% of the controls, and electrotransferred anti-cytochrome c monoclonal antibodies fully prevented apoptosis induced by AEA. Moreover, 5-lipoxygenase inhibitors 5,8,11,14-eicosatetraynoic acid and MK886, cyclooxygenase inhibitor indomethacin, caspase-3 and caspase-9 inhibitors Z-DEVD-FMK and Z-LEHD-FMK, but not nitric oxide synthase inhibitor Nomega-nitro-l-arginine methyl ester, significantly reduced the cell death-inducing effect of AEA. The data presented indicate a protective role of cannabinoid receptors against apoptosis induced by AEA via vanilloid receptors.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Targeting CB2 cannabinoid receptors as a novel therapy to treat malignant lymphoblastic disease.

              In the current study, we examined whether ligation of CB2 receptors would lead to induction of apoptosis in tumors of immune origin and whether CB2 agonist could be used to treat such cancers. Exposure of murine tumors EL-4, LSA, and P815 to delta-9-tetrahydrocannabinol (THC) in vitro led to a significant reduction in cell viability and an increase in apoptosis. Exposure of EL-4 tumor cells to the synthetic cannabinoid HU-210 and the endogenous cannabinoid anandamide led to significant induction of apoptosis, whereas exposure to WIN55212 was not effective. Treatment of EL-4 tumor-bearing mice with THC in vivo led to a significant reduction in tumor load, increase in tumor-cell apoptosis, and increase in survival of tumor-bearing mice. Examination of a number of human leukemia and lymphoma cell lines, including Jurkat, Molt-4, and Sup-T1, revealed that they expressed CB2 receptors but not CB1. These human tumor cells were also susceptible to apoptosis induced by THC, HU-210, anandamide, and the CB2-selective agonist JWH-015. This effect was mediated at least in part through the CB2 receptors because pretreatment with the CB2 antagonist SR144528 partially reversed the THC-induced apoptosis. Culture of primary acute lymphoblastic leukemia cells with THC in vitro reduced cell viability and induced apoptosis. Together, the current data demonstrate that CB2 cannabinoid receptors expressed on malignancies of the immune system may serve as potential targets for the induction of apoptosis. Also, because CB2 agonists lack psychotropic effects, they may serve as novel anticancer agents to selectively target and kill tumors of immune origin.
                Bookmark

                Author and article information

                Journal
                Leukemia & Lymphoma
                Leukemia & Lymphoma
                Informa UK Limited
                1042-8194
                1029-2403
                November 16 2010
                July 2009
                : 44
                : 10
                : 1767-1773
                Article
                10.1080/1042819031000103917
                14692532
                cfd28bc5-a628-4f60-bad2-769afc2fe448
                © 2010
                History

                Comments

                Comment on this article