15
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Proinflammatory Effects of C-Peptide in Different Tissues

      review-article
      , *
      International Journal of Inflammation
      Hindawi Publishing Corporation

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Atherosclerosis is well known as an inflammatory disease that can lead to clinical complications such as heart attack or stroke. C-peptide as a cleavage product of proinsulin is in the last few decades known as an active peptide with a number of different effects on microvascular and macrovascular complications in type 2 diabetic patients. Patients with insulin resistance and early type 2 diabetes show elevated levels of C-peptide in blood. Several last findings demonstrated deposition of C-peptide in the vessel wall in ApoE-deficient mice and induction of local inflammation. Besides that, C-peptide has proliferative effects on human mesangial cells. This review discusses recently published proinflammatory effects of C-peptide in different tissues.

          Related collections

          Most cited references55

          • Record: found
          • Abstract: found
          • Article: not found

          A definition of advanced types of atherosclerotic lesions and a histological classification of atherosclerosis. A report from the Committee on Vascular Lesions of the Council on Arteriosclerosis, American Heart Association.

          This report is the continuation of two earlier reports that defined human arterial intima and precursors of advanced atherosclerotic lesions in humans. This report describes the characteristic components and pathogenic mechanisms of the various advanced atherosclerotic lesions. These, with the earlier definitions of precursor lesions, led to the histological classification of human atherosclerotic lesions found in the second part of this report. The Committee on Vascular Lesions also attempted to correlate the appearance of lesions noted in clinical imaging studies with histological lesion types and corresponding clinical syndromes. In the histological classification, lesions are designated by Roman numerals, which indicate the usual sequence of lesion progression. The initial (type 1) lesion contains enough atherogenic lipoprotein to elicit an increase in macrophages and formation of scattered macrophage foam cells. As in subsequent lesion types, the changes are more marked in locations of arteries with adaptive intimal thickening. (Adaptive thickenings, which are present at constant locations in everyone from birth, do not obstruct the lumen and represent adaptations to local mechanical forces). Type II lesions consist primarily of layers of macrophage foam cells and lipid-laden smooth muscle cells and include lesions grossly designated as fatty streaks. Type III is the intermediate stage between type II and type IV (atheroma, a lesion that is potentially symptom-producing). In addition to the lipid-laden cells of type II, type III lesions contain scattered collections of extracellular lipid droplets and particles that disrupt the coherence of some intimal smooth muscle cells. This extracellular lipid is the immediate precursor of the larger, confluent, and more disruptive core of extracellular lipid that characterizes type IV lesions. Beginning around the fourth decade of life, lesions that usually have a lipid core may also contain thick layers of fibrous connective tissue (type V lesion) and/or fissure, hematoma, and thrombus (type VI lesion). Some type V lesions are largely calcified (type Vb), and some consist mainly of fibrous connective tissue and little or no accumulated lipid or calcium (type Vc).
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            ApoE-deficient mice develop lesions of all phases of atherosclerosis throughout the arterial tree.

            Initial description of apolipoprotein (apo) E-deficient transgenic mice demonstrated the development of severe hypercholesterolemia due to probable delayed clearance of large atherogenic particles from the circulation. Examination of these mice demonstrated foam cell accumulation in the aortic root and pulmonary arteries by 10 weeks of age. In the present study, the animals were fed either chow or a high-fat, Western-type diet and examined at ages ranging from 6 to 40 weeks. Gross examination by dissection microscopy revealed a predilection for development of lesions in the aortic root, at the lesser curvature of the aortic arch, the principal branches of the aorta, and in the pulmonary and carotid arteries. Monocyte attachment to endothelial cells was observed by light and electron microscopic examination at 6 weeks, the earliest time point examined. Foam cell lesions developed as early as 8 weeks, and after 15 weeks advanced lesions (fibrous plaques) were observed. The latter consisted of a fibrous cap containing smooth muscle cells surrounded by connective tissue matrix that covered a necrotic core with numerous foamy macrophages. Mice fed the Western-type diet generally had more advanced lesions than those fed a chow diet. The apoE-deficient mouse contains the entire spectrum of lesions observed during atherogenesis and is the first mouse model to develop lesions similar to those in humans. This model should provide numerous opportunities to study the pathogenesis and therapy of atherosclerosis in a small, genetically defined animal.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Rb function in cell-cycle regulation and apoptosis.

              Loss of cell-cycle control is a hallmark of neoplastic cells. One regulator of the critical G1 to S-phase transition in the cell cycle is the retinoblastoma tumour suppressor protein Rb, which interacts with the E2F family of cell-cycle transcription factors to repress gene transcription required for this transition. Through its interaction with E2F, Rb also regulates genes that control apoptosis. Here we review the roles of Rb in regulating the cell cycle and apoptosis and discuss recent results linking these Rb functions to chromatin-remodelling enzymes.
                Bookmark

                Author and article information

                Journal
                Int J Inflam
                Int J Inflam
                IJI
                International Journal of Inflammation
                Hindawi Publishing Corporation
                2090-8040
                2042-0099
                2012
                11 June 2012
                : 2012
                : 932725
                Affiliations
                Department of Internal Medicine II, Cardiology, University of Ulm, Albert-Einstein-Alle 23, 89081 Ulm, Germany
                Author notes

                Academic Editor: Ichiro Manabe

                Article
                10.1155/2012/932725
                3384941
                22762010
                cfd7dcee-27f5-461e-a455-56780aad0a4b
                Copyright © 2012 D. Vasic and D. Walcher.

                This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

                History
                : 3 February 2012
                : 23 March 2012
                : 27 April 2012
                Categories
                Review Article

                Immunology
                Immunology

                Comments

                Comment on this article