27
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Preventing chronic pain following acute pain: Risk factors, preventive strategies, and their efficacy

      , ,
      European Journal of Pain Supplements
      Elsevier BV

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Chronic pain is the leading cause of disability in the United States. The transition from acute to persistent pain is thought to arise from maladaptive neuroplastic mechanisms involving three intertwined processes, peripheral sensitization, central sensitization, and descending modulation. Strategies aimed at preventing persistent pain may target such processes. Models for studying preventive strategies include persistent post-surgical pain (PPP), persistent post-trauma pain (PTP) and post-herpetic neuralgia (PHN). Such entities allow a more defined acute onset of tissue injury after which study of the long-term effects is more easily examined. In this review, we examine the pathophysiology, epidemiology, risk factors, and treatment strategies for the prevention of chronic pain using these models. Both pharmacological and interventional approaches are described, as well as a discussion of preventive strategies on the horizon.

          Related collections

          Most cited references111

          • Record: found
          • Abstract: found
          • Article: not found

          Cellular and molecular mechanisms of pain.

          The nervous system detects and interprets a wide range of thermal and mechanical stimuli, as well as environmental and endogenous chemical irritants. When intense, these stimuli generate acute pain, and in the setting of persistent injury, both peripheral and central nervous system components of the pain transmission pathway exhibit tremendous plasticity, enhancing pain signals and producing hypersensitivity. When plasticity facilitates protective reflexes, it can be beneficial, but when the changes persist, a chronic pain condition may result. Genetic, electrophysiological, and pharmacological studies are elucidating the molecular mechanisms that underlie detection, coding, and modulation of noxious stimuli that generate pain.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Persistent postsurgical pain: risk factors and prevention.

            Acute postoperative pain is followed by persistent pain in 10-50% of individuals after common operations, such as groin hernia repair, breast and thoracic surgery, leg amputation, and coronary artery bypass surgery. Since chronic pain can be severe in about 2-10% of these patients, persistent postsurgical pain represents a major, largely unrecognised clinical problem. Iatrogenic neuropathic pain is probably the most important cause of long-term postsurgical pain. Consequently, surgical techniques that avoid nerve damage should be applied whenever possible. Also, the effect of aggressive, early therapy for postoperative pain should be investigated, since the intensity of acute postoperative pain correlates with the risk of developing a persistent pain state. Finally, the role of genetic factors should be studied, since only a proportion of patients with intraoperative nerve damage develop chronic pain. Based on information about the molecular mechanisms that affect changes to the peripheral and central nervous system in neuropathic pain, several opportunities exist for multimodal pharmacological intervention. Here, we outline strategies for identification of patients at risk and for prevention and possible treatment of this important entity of chronic pain.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Genetic basis for individual variations in pain perception and the development of a chronic pain condition.

              Pain sensitivity varies substantially among humans. A significant part of the human population develops chronic pain conditions that are characterized by heightened pain sensitivity. We identified three genetic variants (haplotypes) of the gene encoding catecholamine-O-methyltransferase (COMT) that we designated as low pain sensitivity (LPS), average pain sensitivity (APS) and high pain sensitivity (HPS). We show that these haplotypes encompass 96% of the human population, and five combinations of these haplotypes are strongly associated (P=0.0004) with variation in the sensitivity to experimental pain. The presence of even a single LPS haplotype diminishes, by as much as 2.3 times, the risk of developing myogenous temporomandibular joint disorder (TMD), a common musculoskeletal pain condition. The LPS haplotype produces much higher levels of COMT enzymatic activity when compared with the APS or HPS haplotypes. Inhibition of COMT in the rat results in a profound increase in pain sensitivity. Thus, COMT activity substantially influences pain sensitivity, and the three major haplotypes determine COMT activity in humans that inversely correlates with pain sensitivity and the risk of developing TMD.
                Bookmark

                Author and article information

                Journal
                European Journal of Pain Supplements
                Elsevier BV
                17543207
                November 2011
                November 2011
                January 17 2012
                : 5
                : S2
                : 365-376
                Article
                10.1016/j.eujps.2011.08.013
                22102847
                cfd80557-e4aa-4a67-adc9-e04827d06275
                © 2012

                http://doi.wiley.com/10.1002/tdm_license_1.1

                History

                Comments

                Comment on this article