19
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      mGluR5 antagonism inhibits cocaine reinforcement and relapse by elevation of extracellular glutamate in the nucleus accumbens via a CB1 receptor mechanism

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Metabotropic glutamate receptor 5 (mGluR5) antagonism inhibits cocaine self-administration and reinstatement of drug-seeking behavior. However, the cellular and molecular mechanisms underlying this action are poorly understood. Here we report a presynaptic glutamate/cannabinoid mechanism that may underlie this action. Systemic or intra-nucleus accumbens (NAc) administration of the mGluR5 antagonist 2-methyl-6-(phenylethynyl)-pyridine (MPEP) dose-dependently reduced cocaine (and sucrose) self-administration and cocaine-induced reinstatement of drug-seeking behavior. The reduction in cocaine-taking and cocaine-seeking was associated with a reduction in cocaine-enhanced extracellular glutamate, but not cocaine-enhanced extracellular dopamine (DA) in the NAc. MPEP alone, when administered systemically or locally into the NAc, elevated extracellular glutamate, but not DA. Similarly, the cannabinoid CB1 receptor antagonist, rimonabant, elevated NAc glutamate, not DA. mGluR5s were found mainly in striatal medium-spiny neurons, not in astrocytes, and MPEP-enhanced extracellular glutamate was blocked by a NAc CB1 receptor antagonist or N-type Ca ++ channel blocker, suggesting that a retrograde endocannabinoid-signaling mechanism underlies MPEP-induced glutamate release. This interpretation was further supported by our findings that genetic deletion of CB1 receptors in CB1-knockout mice blocked both MPEP-enhanced extracellular glutamate and MPEP-induced reductions in cocaine self-administration. Together, these results indicate that the therapeutic anti-cocaine effects of mGluR5 antagonists are mediated by elevation of extracellular glutamate in the NAc via an endocannabinoid-CB1 receptor disinhibition mechanism.

          Related collections

          Most cited references65

          • Record: found
          • Abstract: found
          • Article: not found

          Pharmacology and functions of metabotropic glutamate receptors.

          P Conn, J P Pin (1997)
          In the mid to late 1980s, studies were published that provided the first evidence for the existence of glutamate receptors that are not ligand-gated cation channels but are coupled to effector systems through GTP-binding proteins. Since those initial reports, tremendous progress has been made in characterizing these metabotropic glutamate receptors (mGluRs), including cloning and characterization of cDNA that encodes a family of eight mGluR subtypes, several of which have multiple splice variants. Also, tremendous progress has been made in developing new highly selective mGluR agonists and antagonists and toward determining the physiologic roles of the mGluRs in mammalian brain. These findings have exciting implications for drug development and suggest that the mGluRs provide a novel target for development of therepeutic agents that could have a significant impact on neuropharmacology.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Progressive ratio schedules in drug self-administration studies in rats: a method to evaluate reinforcing efficacy.

            Drug self-administration studies have recently employed progressive ratio (PR) schedules to examine psychostimulant and opiate reinforcement. This review addresses the technical, statistical, and theoretical issues related to the use of the PR schedule in self-administration studies in rats. Session parameters adopted for use in our laboratory and the considerations relevant to them are described. The strengths and weaknesses of the PR schedule are also discussed.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Prefrontal glutamate release into the core of the nucleus accumbens mediates cocaine-induced reinstatement of drug-seeking behavior.

              The relative contributions of glutamate and dopamine within the nucleus accumbens to cocaine-induced reinstatement of drug-seeking behavior were assessed. When extinguished cocaine self-administration behavior was reinstated by a cocaine-priming injection, extracellular levels of both dopamine and glutamate were elevated in the nucleus accumbens. However, when yoked cocaine or saline control subjects were administered a cocaine prime, only dopamine levels were elevated. Thus, glutamate increased only when animals reinstated lever pressing, whereas dopamine increased regardless of behavior. The increase in glutamate was not accounted for simply by the act of lever pressing itself, because the cocaine self-administration group still demonstrated elevated glutamate when the levers were withdrawn from the operant chamber. Moreover, reinstatement of lever pressing for food did not elevate extracellular glutamate, indicating that increased glutamate initiated responding selectively for a drug reinforcement. The source of glutamate was shown to be glutamatergic afferents from the prefrontal cortex because inhibiting prefrontal cortical glutamatergic neurons that project to the accumbens prevented the rise in glutamate. Together, these data demonstrate that activation of a glutamatergic projection from the prefrontal cortex to the nucleus accumbens underlies cocaine-primed reinstatement of drug-seeking behavior.
                Bookmark

                Author and article information

                Contributors
                x9li@ucsd.edu
                zxi@mail.nih.gov
                Journal
                Sci Rep
                Sci Rep
                Scientific Reports
                Nature Publishing Group UK (London )
                2045-2322
                27 February 2018
                27 February 2018
                2018
                : 8
                : 3686
                Affiliations
                [1 ]ISNI 0000 0001 2107 4242, GRID grid.266100.3, Department of Psychiatry, School of Medicine, , University of California San Diego, ; La Jolla, CA 92093 USA
                [2 ]ISNI 0000 0004 0533 7147, GRID grid.420090.f, Molecular Targets and Medications Discovery Branch, , Intramural Research Program, National Institute on Drug Abuse, ; Baltimore, MD 21224 USA
                [3 ]ISNI 0000 0001 2287 8867, GRID grid.416381.9, Present Address: Psychiatry Residency Training Program, Department of Behavioral Health, , Saint Elizabeths Hospital, ; 1100 Alabama Ave. SE, Washington, DC 20032 USA
                Author information
                http://orcid.org/0000-0002-7272-5428
                Article
                22087
                10.1038/s41598-018-22087-1
                5829076
                29487381
                cfe2cf70-0b2c-46e2-b64e-06e2804c606f
                © The Author(s) 2018

                Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.

                History
                : 11 October 2017
                : 16 February 2018
                Categories
                Article
                Custom metadata
                © The Author(s) 2018

                Uncategorized
                Uncategorized

                Comments

                Comment on this article