29
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      The molecular signature of therapeutic mesenchymal stem cells exposes the architecture of the hematopoietic stem cell niche synapse

      research-article

      Read this article at

          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Background

          The hematopoietic stem cells (HSCs) niche of the bone marrow is comprised of HSCs, osteoblasts, endothelial cells and a stromal component of non-hematopoietic multipotent cells of mesenchymal origin named "mesenchymal stem cells" (MSCs).

          Results

          Here we studied the global transcriptional profile of murine MSCs with immuno-therapeutic potential and compared it with that of 486 publicly available microarray datasets from 12 other mouse tissues or cell types. Principal component analysis and hierarchical clustering identified a unique pattern of gene expression capable of distinctively classifying MSCs from other tissues and cells. We then performed an analysis aimed to identify absolute and relative abundance of transcripts in all cell types. We found that the set of transcripts uniquely expressed by MSCs is enriched in transcription factors and components of the Wnt signaling pathway. The analysis of differentially expressed genes also identified a set of genes specifically involved in the HSC niche and is complemented by functional studies that confirm the findings. Interestingly, some of these genes play a role in the maintenance of HSCs in a quiescent state supporting their survival and preventing them from proliferating and differentiating. We also show that MSCs modulate T cell functions in vitro and, upon in vivo administration, ameliorate experimental autoimmune encephalomyelitis (EAE).

          Conclusion

          Altogether, these findings provide novel and important insights on the mechanisms of T cell function regulation by MSCs and help to cement the rationale for their application in the treatment of autoimmune diseases.

          Related collections

          Most cited references37

          • Record: found
          • Abstract: found
          • Article: not found

          Tie2/angiopoietin-1 signaling regulates hematopoietic stem cell quiescence in the bone marrow niche.

          The quiescent state is thought to be an indispensable property for the maintenance of hematopoietic stem cells (HSCs). Interaction of HSCs with their particular microenvironments, known as the stem cell niches, is critical for adult hematopoiesis in the bone marrow (BM). Here, we demonstrate that HSCs expressing the receptor tyrosine kinase Tie2 are quiescent and antiapoptotic, and comprise a side-population (SP) of HSCs, which adhere to osteoblasts (OBs) in the BM niche. The interaction of Tie2 with its ligand Angiopoietin-1 (Ang-1) induced cobblestone formation of HSCs in vitro and maintained in vivo long-term repopulating activity of HSCs. Furthermore, Ang-1 enhanced the ability of HSCs to become quiescent and induced adhesion to bone, resulting in protection of the HSC compartment from myelosuppressive stress. These data suggest that the Tie2/Ang-1 signaling pathway plays a critical role in the maintenance of HSCs in a quiescent state in the BM niche.
            • Record: found
            • Abstract: found
            • Article: not found

            The stem-cell niche as an entity of action.

            Stem-cell populations are established in 'niches'--specific anatomic locations that regulate how they participate in tissue generation, maintenance and repair. The niche saves stem cells from depletion, while protecting the host from over-exuberant stem-cell proliferation. It constitutes a basic unit of tissue physiology, integrating signals that mediate the balanced response of stem cells to the needs of organisms. Yet the niche may also induce pathologies by imposing aberrant function on stem cells or other targets. The interplay between stem cells and their niche creates the dynamic system necessary for sustaining tissues, and for the ultimate design of stem-cell therapeutics.
              • Record: found
              • Abstract: found
              • Article: not found

              Suppression of allogeneic T-cell proliferation by human marrow stromal cells: implications in transplantation.

              Marrow stromal cells (MSC) can differentiate into multiple mesenchymal tissues. To assess the feasibility of human MSC transplantation, we evaluated the in vitro immunogenicity of MSC and their ability to function as alloantigen presenting cells (APC). Human MSC were derived and used in mixed cell cultures with allogeneic peripheral blood mononuclear cells (PBMC). Expression of immunoregulatory molecules on MSC was analyzed by flow cytometry. An MSC-associated suppressive activity was analyzed using cell-proliferation assays and enzyme-linked immunoassays. MSC failed to elicit a proliferative response when cocultured with allogeneic PBMC, despite provision of a costimulatory signal delivered by an anti-CD28 antibody and pretreatment of MSC with gamma-interferon. MSC express major histocompatibility complex (MHC) class I and lymphocyte function-associated antigen (LFA)-3 antigens constitutively and MHC class II and intercellular adhesion molecule (ICAM)-1 antigens upon gamma-interferon treatment but do not express CD80, CD86, or CD40 costimulatory molecules. MSC actively suppressed proliferation of responder PBMC stimulated by third-party allogeneic PBMC as well as T cells stimulated by anti-CD3 and anti-CD28 antibodies. Separation of MSC and PBMC by a semipermeable membrane did not abrogate the suppression. The suppressive activity could not be accounted for by MSC production of interleukin-10, transforming growth factor-beta1, or prostaglandin E2, nor by tryptophan depletion of the culture medium. Human MSC fail to stimulate allogeneic PBMC or T-cell proliferation in mixed cell cultures. Unlike other nonprofessional APC, this failure of function is not reversed by provision of CD28-mediated costimulation nor gamma-interferon pretreatment. Rather, MSC actively inhibit T-cell proliferation, suggesting that allogeneic MSC transplantation might be accomplished without the need for significant host immunosuppression.

                Author and article information

                Journal
                BMC Genomics
                BMC Genomics
                BioMed Central (London )
                1471-2164
                2007
                6 March 2007
                : 8
                : 65
                Affiliations
                [1 ]Department of Neurology, School of Medicine, University of California, San Francisco, CA, USA
                [2 ]Neuroimmunology Unit, Department of Neurosciences, Ophthalmology and Genetics, University of Genoa, Italy
                [3 ]Centre of Excellence for Biomedical Research, University of Genoa, Italy
                Article
                1471-2164-8-65
                10.1186/1471-2164-8-65
                1821333
                17341312
                d003b5df-8409-4f08-9dee-261a1881ed4c
                Copyright © 2007 Pedemonte et al; licensee BioMed Central Ltd.

                This is an Open Access article distributed under the terms of the Creative Commons Attribution License ( http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

                History
                : 10 November 2006
                : 6 March 2007
                Categories
                Research Article

                Genetics
                Genetics

                Comments

                Comment on this article

                Related Documents Log