17
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Dynamics of Dzyaloshinskii domain walls in ultrathin magnetic films

      Preprint
      , , , ,

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          We explore a new type of domain wall structure in ultrathin films with perpendicular anisotropy, that is influenced by the Dzyaloshinskii-Moriya interaction due to the adjacent layers. This study is performed by numerical and analytical micromagnetics. We show that these walls can behave like Neel walls with very high stability, moving in stationary conditions at large velocities under large fields. We discuss the relevance of such walls, that we propose to call Dzyaloshinskii domain walls, for current-driven domain wall motion under the spin Hall effect.

          Related collections

          Most cited references6

          • Record: found
          • Abstract: found
          • Article: found
          Is Open Access

          Spin torque switching with the giant spin Hall effect of tantalum

          We report a giant spin Hall effect (SHE) in {\beta}-Ta that generates spin currents intense enough to induce efficient spin-transfer-torque switching of ferromagnets, thereby providing a new approach for controlling magnetic devices that can be superior to existing technologies. We quantify this SHE by three independent methods and demonstrate spin-torque (ST) switching of both out-of-plane and in-plane magnetized layers. We implement a three-terminal device that utilizes current passing through a low impedance Ta-ferromagnet bilayer to effect switching of a nanomagnet, with a higher-impedance magnetic tunnel junction for read-out. The efficiency and reliability of this device, together with its simplicity of fabrication, suggest that this three-terminal SHE-ST design can eliminate the main obstacles currently impeding the development of magnetic memory and non-volatile spin logic technologies.
            Bookmark
            • Record: found
            • Abstract: not found
            • Article: not found

            Theory of Magnetism of NiF2

              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Chiral symmetry breaking in magnetic thin films and multilayers.

              A phenomenological theory of chiral symmetry breaking in magnetic nanostructures is developed considering induced, inhomogeneous chiral interactions (Dzyaloshinsky-Moriya-type). Application of the theory to films and multilayers with in-plane and out-of-plane magnetization predicts modulated and two-dimensional localized patterns (vortices). These new classes of magnetic patterns are intrinsically stable and localized on nanometer scale. Various experimental observations agree qualitatively with structures derived from this theory.
                Bookmark

                Author and article information

                Journal
                26 November 2012
                Article
                10.1209/0295-5075/100/57002
                1211.5970
                d00f116f-8a6b-4dfd-83aa-93bae6a89754

                http://arxiv.org/licenses/nonexclusive-distrib/1.0/

                History
                Custom metadata
                7 pages, 3 figures. Accepted for publication in Europhysics Letters
                cond-mat.mes-hall cond-mat.mtrl-sci

                Comments

                Comment on this article