13
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found

      Effect of thickness on structural, corrosion and mechanical properties of a thin ZrN film deposited by medium frequency (MF) reactive sputtering Translated title: Die strukturellen, korrosiven und mechanischen Auswirkungen der Dicke eines dünnen mittels reaktiven Sputterns bei mittlerer Frequenz applizierten ZrN-Films

      research-article
      1 , * , , 1 , 2
      Materials Testing
      Carl Hanser Verlag

      Read this article at

      ScienceOpenPublisher
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Zirconium nitride (ZrN) thin films were prepared on stainless steel (SS) substrates by medium frequency (MF) reactive sputtering with gas ion source (GIS) by varying the deposition time and obtained thickness (t ZrN) in the range of 1.25 to 3.24 μm. The effect of thickness on the structural and microstructural properties was studied using XRD and AFM. XRD characterization revealed that the texture of the ZrN thin films changes as a function of thickness. Both, the (111) and (200) peak, appear initially and (111) becomes more intense with increasing t ZrN. AFM imaging revealed that the ZrN thin film coated with t ZrN ≈ 3.24 μm shows larger grains that are uniformly distributed over the surface. An average hardness value of 19.79 GPa was observed for ZrN thin films having t ZrN ≈ 3.24 μm. The ZrN thin films having t ZrN ≈ 3.24 μm exhibits better adhesion strength up to 20 N. The electrochemical polarization studies indicated that the ZrN thin film having larger thickness shows improved corrosion resistance compared to SS in 3.5 % NaCl solution.

          Kurzfassung

          Für die diesem Beitrag zugrunde liegende Studie wurden dünne Filme aus Zirkonnitrid (ZrN) auf Substrate aus hochlegiertem Stahl mittels reaktiven Sputterns bei mittlerer Frequenz unter Verwendung einer Quelle mit ionisiertem Gas aufgebracht, wobei die Ablagerungszeit variiert wurde und verschiedene Dicken t ZrN im Bereich von 1,25 bis 3,24 μm erreicht wurden. Es wurden die Auswirkungen der Variation der Dicke auf die strukturellen und mikrostrukturellen Eigenschaften mittels XRD und AFM untersucht. Die Charakterisierung mit XRD ergab, dass die Textur der ZrN-Filme sich als Funktion der Dicke t ZrN verändert. Sowohl der (111) als auch der (200) Peak treten anfänglich auf und der (111) Peak wird mit zunehmendem t ZrN intensiver. Die AFM-Bildgebung zeigte, dass der mit t ZrN ≈ 3,24 μm aufgebrachte ZrN-Film größere Körner aufwies, die gleichmäßig über die Oberfläche verteilt waren. Für die ZrN-Filme mit t ZrN ≈ 3,24 μm wurde ein durchschnittlicher Härtewert von 19.79 GPa festgestellt. Die dünnen ZrN-Filme mit t ZrN ≈ 3,24 μm weisen eine bessere Adhäsionsfestigkeit von bis zu 20 N auf. Die elektrochemischen Polarisationsversuche deuten darauf hin, dass die dünnen ZrN-Filme mit einer größeren Dicke einen verbesserten Korrosionswiderstand gegenüber dem hochlegierten Stahl in einer 3,5 % NaCl-Lösung aufweisen.

          Related collections

          Most cited references21

          • Record: found
          • Abstract: found
          • Article: not found

          An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments

          The indentation load-displacement behavior of six materials tested with a Berkovich indenter has been carefully documented to establish an improved method for determining hardness and elastic modulus from indentation load-displacement data. The materials included fused silica, soda–lime glass, and single crystals of aluminum, tungsten, quartz, and sapphire. It is shown that the load–displacement curves during unloading in these materials are not linear, even in the initial stages, thereby suggesting that the flat punch approximation used so often in the analysis of unloading data is not entirely adequate. An analysis technique is presented that accounts for the curvature in the unloading data and provides a physically justifiable procedure for determining the depth which should be used in conjunction with the indenter shape function to establish the contact area at peak load. The hardnesses and elastic moduli of the six materials are computed using the analysis procedure and compared with values determined by independent means to assess the accuracy of the method. The results show that with good technique, moduli can be measured to within 5%.
            • Record: found
            • Abstract: not found
            • Article: not found

            Effects of strain energy on the preferred orientation of TiN thin films

              • Record: found
              • Abstract: not found
              • Article: not found

              Hardness and residual stress in nanocrystalline ZrN films: Effect of bias voltage and heat treatment

                Author and article information

                Journal
                mp
                Materials Testing
                Carl Hanser Verlag
                0025-5300
                2195-8572
                16 November 2016
                : 58
                : 11-12
                : 953-958
                Affiliations
                1 Dindigul
                2 Hosur, India
                Author notes
                [* ] Correspondence Address, A. Kavitha, Department of Physics, University College of Engineering, Anna University, Dindigul 624622, India, E-mail: kavithasep.venkatesan@ 123456gmail.com

                Ayyalu Kavitha, born in 1981, is a PhD student in the Department of Physics, University College of Engineering, Anna University Campus, Dindigul, India. She obtained her Master degree in Physics from Madurai Kamraj University, Tamilnadu, India in 2003. Her primary research area is materials science and thin film technology.

                Dr. Raman Kannan is currently working as Assistant Professor at Department of Physics, University College of Engineering, Anna University Campus, Dindigul, India. He obtained his PhD degree from Alagappa University, Karaikudi, Tamilnadu, India and his Post Doctoral Fellowship from the Department of Materials Science and Engineering of Cornell University, Ithaca; NY; USA. He is specialized in materials science, polymers, Li batteries and fuel cells.

                Dr. Subramani Loganathan, born in 1963, is currently working as Group Manager in the Ion Plating Department, Titan Industries, Hosur, Tamilnadu, India. He obtained his PhD degree from the Indian Institute of Technology, Delhi, India. He is specialized in industrial tribology and thin film deposition.

                Article
                MP110945
                10.3139/120.110945
                d0277255-19aa-47fc-a4ce-85fada2f0695
                © 2016, Carl Hanser Verlag, München
                History
                Page count
                References: 22, Pages: 6
                Categories
                Fachbeiträge/Technical Contributions

                Materials technology,Materials characterization,Materials science
                Materials technology, Materials characterization, Materials science

                Comments

                Comment on this article

                Related Documents Log