78
views
0
recommends
+1 Recommend
1 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      A Hybrid Genetic Linkage Map of Two Ecologically and Morphologically Divergent Midas Cichlid Fishes ( Amphilophus spp.) Obtained by Massively Parallel DNA Sequencing (ddRADSeq)

      research-article

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Cichlid fishes are an excellent model system for studying speciation and the formation of adaptive radiations because of their tremendous species richness and astonishing phenotypic diversity. Most research has focused on African rift lake fishes, although Neotropical cichlid species display much variability as well. Almost one dozen species of the Midas cichlid species complex ( Amphilophus spp.) have been described so far and have formed repeated adaptive radiations in several Nicaraguan crater lakes. Here we apply double-digest restriction-site associated DNA sequencing to obtain a high-density linkage map of an interspecific cross between the benthic Amphilophus astorquii and the limnetic Amphilophus zaliosus, which are sympatric species endemic to Crater Lake Apoyo, Nicaragua. A total of 755 RAD markers were genotyped in 343 F 2 hybrids. The map resolved 25 linkage groups and spans a total distance of 1427 cM with an average marker spacing distance of 1.95 cM, almost matching the total number of chromosomes ( n = 24) in these species. Regions of segregation distortion were identified in five linkage groups. Based on the pedigree of parents to F 2 offspring, we calculated a genome-wide mutation rate of 6.6 × 10 −8 mutations per nucleotide per generation. This genetic map will facilitate the mapping of ecomorphologically relevant adaptive traits in the repeated phenotypes that evolved within the Midas cichlid lineage and, as the first linkage map of a Neotropical cichlid, facilitate comparative genomic analyses between African cichlids, Neotropical cichlids and other teleost fishes.

          Most cited references54

          • Record: found
          • Abstract: found
          • Article: not found

          Widespread parallel evolution in sticklebacks by repeated fixation of Ectodysplasin alleles.

          Major phenotypic changes evolve in parallel in nature by molecular mechanisms that are largely unknown. Here, we use positional cloning methods to identify the major chromosome locus controlling armor plate patterning in wild threespine sticklebacks. Mapping, sequencing, and transgenic studies show that the Ectodysplasin (EDA) signaling pathway plays a key role in evolutionary change in natural populations and that parallel evolution of stickleback low-plated phenotypes at most freshwater locations around the world has occurred by repeated selection of Eda alleles derived from an ancestral low-plated haplotype that first appeared more than two million years ago. Members of this clade of low-plated alleles are present at low frequencies in marine fish, which suggests that standing genetic variation can provide a molecular basis for rapid, parallel evolution of dramatic phenotypic change in nature.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Time dependency of molecular rate estimates and systematic overestimation of recent divergence times.

            Studies of molecular evolutionary rates have yielded a wide range of rate estimates for various genes and taxa. Recent studies based on population-level and pedigree data have produced remarkably high estimates of mutation rate, which strongly contrast with substitution rates inferred in phylogenetic (species-level) studies. Using Bayesian analysis with a relaxed-clock model, we estimated rates for three groups of mitochondrial data: avian protein-coding genes, primate protein-coding genes, and primate d-loop sequences. In all three cases, we found a measurable transition between the high, short-term (< 1-2 Myr) mutation rate and the low, long-term substitution rate. The relationship between the age of the calibration and the rate of change can be described by a vertically translated exponential decay curve, which may be used for correcting molecular date estimates. The phylogenetic substitution rates in mitochondria are approximately 0.5% per million years for avian protein-coding sequences and 1.5% per million years for primate protein-coding and d-loop sequences. Further analyses showed that purifying selection offers the most convincing explanation for the observed relationship between the estimated rate and the depth of the calibration. We rule out the possibility that it is a spurious result arising from sequence errors, and find it unlikely that the apparent decline in rates over time is caused by mutational saturation. Using a rate curve estimated from the d-loop data, several dates for last common ancestors were calculated: modern humans and Neandertals (354 ka; 222-705 ka), Neandertals (108 ka; 70-156 ka), and modern humans (76 ka; 47-110 ka). If the rate curve for a particular taxonomic group can be accurately estimated, it can be a useful tool for correcting divergence date estimates by taking the rate decay into account. Our results show that it is invalid to extrapolate molecular rates of change across different evolutionary timescales, which has important consequences for studies of populations, domestication, conservation genetics, and human evolution.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              The genomics of speciation-with-gene-flow.

              The emerging field of speciation genomics is advancing our understanding of the evolution of reproductive isolation from the individual gene to a whole-genome perspective. In this new view it is important to understand the conditions under which 'divergence hitchhiking' associated with the physical linkage of gene regions, versus 'genome hitchhiking' associated with reductions in genome-wide rates of gene flow caused by selection, can enhance speciation-with-gene-flow. We describe here a theory predicting four phases of speciation, defined by changes in the relative effectiveness of divergence and genome hitchhiking, and review empirical data in light of the theory. We outline future directions, emphasizing the need to couple next-generation sequencing with selection, transplant, functional genomics, and mapping studies. This will permit a natural history of speciation genomics that will help to elucidate the factors responsible for population divergence and the roles that genome structure and different forms of hitchhiking play in facilitating the genesis of new biodiversity. Copyright © 2012 Elsevier Ltd. All rights reserved.
                Bookmark

                Author and article information

                Journal
                G3 (Bethesda)
                Genetics
                ggg
                ggg
                ggg
                G3: Genes|Genomes|Genetics
                Genetics Society of America
                2160-1836
                1 January 2013
                January 2013
                : 3
                : 1
                : 65-74
                Affiliations
                Lehrstuhl für Zoologie und Evolutionsbiologie, Department of Biology, University of Konstanz, 78457 Konstanz, Germany
                Author notes

                Supporting information is available online at http://www.g3journal.org/lookup/suppl/doi:10.1534/g3.112.003897/-/DC1.

                [1]

                Present address: Institute of Biodiversity, Animal Health & Comparative Medicine, College of Medical, Veterinary & Life Sciences, University of Glasgow, Glasgow, UK.

                [2 ]Corresponding author: Department of Biology, University of Konstanz, Universitätsstrasse 10, 78457 Konstanz, Germany. E-mail: axel.meyer@ 123456uni-konstanz.de
                Article
                GGG_003897
                10.1534/g3.112.003897
                3538344
                23316439
                d02c86d4-8f3c-453d-856d-e054541e1023
                Copyright © 2013 Recknagel et al.

                This is an open-access article distributed under the terms of the Creative Commons Attribution Unported License ( http://creativecommons.org/licenses/by/3.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

                History
                : 08 August 2012
                : 05 November 2012
                Categories
                Investigations
                Custom metadata
                v1

                Genetics
                midas cichlid,double-digest radseq,synteny,segregation distortion,rad markers,mutation rate
                Genetics
                midas cichlid, double-digest radseq, synteny, segregation distortion, rad markers, mutation rate

                Comments

                Comment on this article