Blog
About

  • Record: found
  • Abstract: found
  • Article: not found

Role of Eukaryotic Initiation Factors during Cellular Stress and Cancer Progression

Read this article at

ScienceOpenPublisherPMC
Bookmark
      There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

      Abstract

      Protein synthesis can be segmented into distinct phases comprising mRNA translation initiation, elongation, and termination. Translation initiation is a highly regulated and rate-limiting step of protein synthesis that requires more than 12 eukaryotic initiation factors (eIFs). Extensive evidence shows that the transcriptome and corresponding proteome do not invariably correlate with each other in a variety of contexts. In particular, translation of mRNAs specific to angiogenesis, tumor development, and apoptosis is altered during physiological and pathophysiological stress conditions. In cancer cells, the expression and functions of eIFs are hampered, resulting in the inhibition of global translation and enhancement of translation of subsets of mRNAs by alternative mechanisms. A precise understanding of mechanisms involving eukaryotic initiation factors leading to differential protein expression can help us to design better strategies to diagnose and treat cancer. The high spatial and temporal resolution of translation control can have an immediate effect on the microenvironment of the cell in comparison with changes in transcription. The dysregulation of mRNA translation mechanisms is increasingly being exploited as a target to treat cancer. In this review, we will focus on this context by describing both canonical and noncanonical roles of eIFs, which alter mRNA translation.

      Related collections

      Most cited references 195

      • Record: found
      • Abstract: found
      • Article: not found

      Global quantification of mammalian gene expression control.

      Gene expression is a multistep process that involves the transcription, translation and turnover of messenger RNAs and proteins. Although it is one of the most fundamental processes of life, the entire cascade has never been quantified on a genome-wide scale. Here we simultaneously measured absolute mRNA and protein abundance and turnover by parallel metabolic pulse labelling for more than 5,000 genes in mammalian cells. Whereas mRNA and protein levels correlated better than previously thought, corresponding half-lives showed no correlation. Using a quantitative model we have obtained the first genome-scale prediction of synthesis rates of mRNAs and proteins. We find that the cellular abundance of proteins is predominantly controlled at the level of translation. Genes with similar combinations of mRNA and protein stability shared functional properties, indicating that half-lives evolved under energetic and dynamic constraints. Quantitative information about all stages of gene expression provides a rich resource and helps to provide a greater understanding of the underlying design principles.
        Bookmark
        • Record: found
        • Abstract: found
        • Article: not found

        Regulation of translation initiation in eukaryotes: mechanisms and biological targets.

        Translational control in eukaryotic cells is critical for gene regulation during nutrient deprivation and stress, development and differentiation, nervous system function, aging, and disease. We describe recent advances in our understanding of the molecular structures and biochemical functions of the translation initiation machinery and summarize key strategies that mediate general or gene-specific translational control, particularly in mammalian systems.
          Bookmark
          • Record: found
          • Abstract: found
          • Article: not found

          Regulated translation initiation controls stress-induced gene expression in mammalian cells.

           H Zeng,  R Wek,  Isabel Novoa (2000)
          Protein kinases that phosphorylate the alpha subunit of eukaryotic initiation factor 2 (eIF2alpha) are activated in stressed cells and negatively regulate protein synthesis. Phenotypic analysis of targeted mutations in murine cells reveals a novel role for eIF2alpha kinases in regulating gene expression in the unfolded protein response (UPR) and in amino acid starved cells. When activated by their cognate upstream stress signals, the mammalian eIF2 kinases PERK and GCN2 repress translation of most mRNAs but selectively increase translation of Activating Transcription Factor 4 (ATF4), resulting in the induction of the downstream gene CHOP (GADD153). This is the first example of a mammalian signaling pathway homologous to the well studied yeast general control response in which eIF2alpha phosphorylation activates genes involved in amino acid biosynthesis. Mammalian cells thus utilize an ancient pathway to regulate gene expression in response to diverse stress signals.
            Bookmark

            Author and article information

            Affiliations
            Department of Chemistry and Biochemistry, Alberta RNA Research and Training Institute, University of Lethbridge, Lethbridge, AB, Canada T1K 3M4
            Author notes

            Academic Editor: Hyouta Himeno

            Journal
            J Nucleic Acids
            J Nucleic Acids
            JNA
            Journal of Nucleic Acids
            Hindawi Publishing Corporation
            2090-0201
            2090-021X
            2016
            19 December 2016
            : 2016
            5204094
            10.1155/2016/8235121
            Copyright © 2016 Divya Khandige Sharma et al.

            This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

            Categories
            Review Article

            Genetics

            Comments

            Comment on this article