42
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Role of Eukaryotic Initiation Factors during Cellular Stress and Cancer Progression

      review-article

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Protein synthesis can be segmented into distinct phases comprising mRNA translation initiation, elongation, and termination. Translation initiation is a highly regulated and rate-limiting step of protein synthesis that requires more than 12 eukaryotic initiation factors (eIFs). Extensive evidence shows that the transcriptome and corresponding proteome do not invariably correlate with each other in a variety of contexts. In particular, translation of mRNAs specific to angiogenesis, tumor development, and apoptosis is altered during physiological and pathophysiological stress conditions. In cancer cells, the expression and functions of eIFs are hampered, resulting in the inhibition of global translation and enhancement of translation of subsets of mRNAs by alternative mechanisms. A precise understanding of mechanisms involving eukaryotic initiation factors leading to differential protein expression can help us to design better strategies to diagnose and treat cancer. The high spatial and temporal resolution of translation control can have an immediate effect on the microenvironment of the cell in comparison with changes in transcription. The dysregulation of mRNA translation mechanisms is increasingly being exploited as a target to treat cancer. In this review, we will focus on this context by describing both canonical and noncanonical roles of eIFs, which alter mRNA translation.

          Related collections

          Most cited references162

          • Record: found
          • Abstract: found
          • Article: not found

          The integrated stress response.

          In response to diverse stress stimuli, eukaryotic cells activate a common adaptive pathway, termed the integrated stress response (ISR), to restore cellular homeostasis. The core event in this pathway is the phosphorylation of eukaryotic translation initiation factor 2 alpha (eIF2α) by one of four members of the eIF2α kinase family, which leads to a decrease in global protein synthesis and the induction of selected genes, including the transcription factor ATF4, that together promote cellular recovery. The gene expression program activated by the ISR optimizes the cellular response to stress and is dependent on the cellular context, as well as on the nature and intensity of the stress stimuli. Although the ISR is primarily a pro-survival, homeostatic program, exposure to severe stress can drive signaling toward cell death. Here, we review current understanding of the ISR signaling and how it regulates cell fate under diverse types of stress.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Upstream open reading frames cause widespread reduction of protein expression and are polymorphic among humans.

            Upstream ORFs (uORFs) are mRNA elements defined by a start codon in the 5' UTR that is out-of-frame with the main coding sequence. Although uORFs are present in approximately half of human and mouse transcripts, no study has investigated their global impact on protein expression. Here, we report that uORFs correlate with significantly reduced protein expression of the downstream ORF, based on analysis of 11,649 matched mRNA and protein measurements from 4 published mammalian studies. Using reporter constructs to test 25 selected uORFs, we estimate that uORFs typically reduce protein expression by 30-80%, with a modest impact on mRNA levels. We additionally identify polymorphisms that alter uORF presence in 509 human genes. Finally, we report that 5 uORF-altering mutations, detected within genes previously linked to human diseases, dramatically silence expression of the downstream protein. Together, our results suggest that uORFs influence the protein expression of thousands of mammalian genes and that variation in these elements can influence human phenotype and disease.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Translational control in cancer.

              Remarkable progress has been made in defining a new understanding of the role of mRNA translation and protein synthesis in human cancer. Translational control is a crucial component of cancer development and progression, directing both global control of protein synthesis and selective translation of specific mRNAs that promote tumour cell survival, angiogenesis, transformation, invasion and metastasis. Translational control of cancer is multifaceted, involving alterations in translation factor levels and activities unique to different types of cancers, disease stages and the tumour microenvironment. Several clinical efforts are underway to target specific components of the translation apparatus or unique mRNA translation elements for cancer therapeutics.
                Bookmark

                Author and article information

                Journal
                J Nucleic Acids
                J Nucleic Acids
                JNA
                Journal of Nucleic Acids
                Hindawi Publishing Corporation
                2090-0201
                2090-021X
                2016
                19 December 2016
                : 2016
                : 8235121
                Affiliations
                Department of Chemistry and Biochemistry, Alberta RNA Research and Training Institute, University of Lethbridge, Lethbridge, AB, Canada T1K 3M4
                Author notes

                Academic Editor: Hyouta Himeno

                Author information
                http://orcid.org/0000-0002-0218-884X
                Article
                10.1155/2016/8235121
                5204094
                28083147
                d03b4622-faca-4de1-ad2c-64528a4c1716
                Copyright © 2016 Divya Khandige Sharma et al.

                This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

                History
                : 30 October 2016
                : 14 November 2016
                Categories
                Review Article

                Genetics
                Genetics

                Comments

                Comment on this article