59
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Probiotics for the Control of Parasites: An Overview

      review-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Probiotics are defined as live organisms, which confer benefits to the host. Their efficiency was demonstrated for the treatment of gastrointestinal disorders, respiratory infections, and allergic symptoms, but their use is mostly limited to bacterial and viral diseases. During the last decade, probiotics as means for the control of parasite infections were reported covering mainly intestinal diseases but also some nongut infections, that are all of human and veterinary importance. In most cases, evidence for a beneficial effect was obtained by studies using animal models. In a few cases, cellular interactions between probiotics and pathogens or relevant host cells were also investigated using in vitro culture systems. However, molecular mechanisms mediating the beneficial effects are as yet poorly understood. These studies indicate that probiotics might indeed provide a strain-specific protection against parasites, probably through multiple mechanisms. But more unravelling studies are needed to justify probiotic utilisation in therapeutics.

          Related collections

          Most cited references93

          • Record: found
          • Abstract: found
          • Article: not found

          A microbial symbiosis factor prevents intestinal inflammatory disease.

          Humans are colonized by multitudes of commensal organisms representing members of five of the six kingdoms of life; however, our gastrointestinal tract provides residence to both beneficial and potentially pathogenic microorganisms. Imbalances in the composition of the bacterial microbiota, known as dysbiosis, are postulated to be a major factor in human disorders such as inflammatory bowel disease. We report here that the prominent human symbiont Bacteroides fragilis protects animals from experimental colitis induced by Helicobacter hepaticus, a commensal bacterium with pathogenic potential. This beneficial activity requires a single microbial molecule (polysaccharide A, PSA). In animals harbouring B. fragilis not expressing PSA, H. hepaticus colonization leads to disease and pro-inflammatory cytokine production in colonic tissues. Purified PSA administered to animals is required to suppress pro-inflammatory interleukin-17 production by intestinal immune cells and also inhibits in vitro reactions in cell cultures. Furthermore, PSA protects from inflammatory disease through a functional requirement for interleukin-10-producing CD4+ T cells. These results show that molecules of the bacterial microbiota can mediate the critical balance between health and disease. Harnessing the immunomodulatory capacity of symbiosis factors such as PSA might potentially provide therapeutics for human inflammatory disorders on the basis of entirely novel biological principles.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Mechanisms of probiotic actions - A review.

            Probiotics are gaining more and more interest as alternatives for antibiotics or anti-inflammatory drugs. However, their mode of action is poorly understood. This review will present examples of probiotic actions from three general modes of actions into which probiotic effects can be classified. Probiotics might modulate the host's immune system, affect other microorganisms directly or act on microbial products, host products or food components. What kind of effect(s) a certain probiotic executes depends on its metabolic properties, the molecules presented at its surface or on the components secreted. Even integral parts of the bacterial cell such as its DNA or peptidoglycan might be of importance for its probiotic effectiveness. The individual combination of such properties in a certain probiotic strain determines its specific probiotic action and as a consequence its effective application for the prevention and/or treatment of a certain disease. Copyright 2009 Elsevier GmbH. All rights reserved.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              S layer protein A of Lactobacillus acidophilus NCFM regulates immature dendritic cell and T cell functions.

              Dendritic cells (DCs) are antigen-presenting cells that play an essential role in mucosal tolerance. They regularly encounter beneficial intestinal bacteria, but the nature of these cellular contacts and the immune responses elicited by the bacteria are not entirely elucidated. Here, we examined the interactions of Lactobacillus acidophilus NCFM and its cell surface compounds with DCs. L. acidophilus NCFM attached to DCs and induced a concentration-dependent production of IL-10, and low IL-12p70. We further demonstrated that the bacterium binds to DC-specific ICAM-3-grabbing nonintegrin (DC-SIGN), a DC- specific receptor. To identify the DC-SIGN ligand present on the bacterium, we took advantage of a generated array of L. acidophilus NCFM mutants. A knockout mutant of L. acidophilus NCFM lacking the surface (S) layer A protein (SlpA) was significantly reduced in binding to DC-SIGN. This mutant incurred a chromosomal inversion leading to dominant expression of a second S layer protein, SlpB. In the SlpB-dominant strain, the nature of the interaction of this bacterium with DCs changed dramatically. Higher concentrations of proinflammatory cytokines such as IL-12p70, TNFalpha, and IL-1beta were produced by DCs interacting with the SlpB-dominant strain compared with the parent NCFM strain. Unlike the SlpA-knockout mutant, T cells primed with L. acidophilus NCFM stimulated DCs produced more IL-4. The SlpA-DC-SIGN interaction was further confirmed as purified SlpA protein ligated directly to the DC-SIGN. In conclusion, the major S layer protein, SlpA, of L. acidophilus NCFM is the first probiotic bacterial DC-SIGN ligand identified that is functionally involved in the modulation of DCs and T cells functions.
                Bookmark

                Author and article information

                Journal
                J Parasitol Res
                JPR
                Journal of Parasitology Research
                Hindawi Publishing Corporation
                2090-0023
                2090-0031
                2011
                28 September 2011
                : 2011
                : 610769
                Affiliations
                Team Adaptation of Protozoa to their Environment, UMR 7245 CNRS, National Museum of Natural History, CP52, 61 rue Buffon, 75231 Paris Cedex 05, France
                Author notes
                *Philippe Grellier: grellier@ 123456mnhn.fr

                Academic Editor: José F. Silveira

                Article
                10.1155/2011/610769
                3182331
                21966589
                d03e4bea-0fa2-4757-92bb-98313d19eae3
                Copyright © 2011 Marie-Agnès Travers et al.

                This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

                History
                : 22 February 2011
                : 11 July 2011
                : 11 July 2011
                Categories
                Review Article

                Parasitology
                Parasitology

                Comments

                Comment on this article