825
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Universal sample preparation method for proteome analysis

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          We describe a method, filter-aided sample preparation (FASP), which combines the advantages of in-gel and in-solution digestion for mass spectrometry-based proteomics. We completely solubilized the proteome in sodium dodecyl sulfate, which we then exchanged by urea on a standard filtration device. Peptides eluted after digestion on the filter were pure, allowing single-run analyses of organelles and an unprecedented depth of proteome coverage.

          Related collections

          Most cited references 14

          • Record: found
          • Abstract: found
          • Article: not found

          Large-scale analysis of the yeast proteome by multidimensional protein identification technology.

          We describe a largely unbiased method for rapid and large-scale proteome analysis by multidimensional liquid chromatography, tandem mass spectrometry, and database searching by the SEQUEST algorithm, named multidimensional protein identification technology (MudPIT). MudPIT was applied to the proteome of the Saccharomyces cerevisiae strain BJ5460 grown to mid-log phase and yielded the largest proteome analysis to date. A total of 1,484 proteins were detected and identified. Categorization of these hits demonstrated the ability of this technology to detect and identify proteins rarely seen in proteome analysis, including low-abundance proteins like transcription factors and protein kinases. Furthermore, we identified 131 proteins with three or more predicted transmembrane domains, which allowed us to map the soluble domains of many of the integral membrane proteins. MudPIT is useful for proteome analysis and may be specifically applied to integral membrane proteins to obtain detailed biochemical information on this unwieldy class of proteins.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            A method for the comprehensive proteomic analysis of membrane proteins.

            We describe a method that allows for the concurrent proteomic analysis of both membrane and soluble proteins from complex membrane-containing samples. When coupled with multidimensional protein identification technology (MudPIT), this method results in (i) the identification of soluble and membrane proteins, (ii) the identification of post-translational modification sites on soluble and membrane proteins, and (iii) the characterization of membrane protein topology and relative localization of soluble proteins. Overlapping peptides produced from digestion with the robust nonspecific protease proteinase K facilitates the identification of covalent modifications (phosphorylation and methylation). High-pH treatment disrupts sealed membrane compartments without solubilizing or denaturing the lipid bilayer to allow mapping of the soluble domains of integral membrane proteins. Furthermore, coupling protease protection strategies to this method permits characterization of the relative sidedness of the hydrophilic domains of membrane proteins.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Stable isotope labeling by amino acids in cell culture (SILAC) and proteome quantitation of mouse embryonic stem cells to a depth of 5,111 proteins.

              Embryonic stem (ES) cells are pluripotent cells isolated from mammalian preimplantation embryos. They are capable of differentiating into all cell types and therefore hold great promise in regenerative medicine. Here we show that murine ES cells can be fully SILAC (stable isotope labeling by amino acids in cell culture)-labeled when grown feeder-free during the last phase of cell culture. We fractionated the SILAC-labeled ES cell proteome by one-dimensional gel electrophoresis and by isoelectric focusing of peptides. High resolution analysis on a linear ion trap-orbitrap instrument (LTQ-Orbitrap) at sub-ppm mass accuracy resulted in confident identification and quantitation of more than 5,000 distinct proteins. This is the largest quantified proteome reported to date and contains prominent stem cell markers such as OCT4, NANOG, SOX2, and UTF1 along with the embryonic form of RAS (ERAS). We also quantified the proportion of the ES cell proteome present in cytosolic, nucleoplasmic, and membrane/chromatin fractions. We compared two different preparation approaches, cell fractionation followed by one-dimensional gel separation and in-solution digestion of total cell lysate combined with isoelectric focusing, and found comparable proteome coverage with no apparent bias for any functional protein classes for either approach. Bioinformatics analysis of the ES cell proteome revealed a broad distribution of cellular functions with overrepresentation of proteins involved in proliferation. We compared the proteome with a recently published map of chromatin states of promoters in ES cells and found excellent correlation between protein expression and the presence of active and repressive chromatin marks.
                Bookmark

                Author and article information

                Journal
                Nature Methods
                Nat Methods
                Springer Science and Business Media LLC
                1548-7091
                1548-7105
                May 2009
                April 19 2009
                May 2009
                : 6
                : 5
                : 359-362
                Article
                10.1038/nmeth.1322
                19377485
                © 2009

                Comments

                Comment on this article