24
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      The effect of gut microbiome on tolerance to morphine mediated antinociception in mice

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          There is growing appreciation for the importance of gastrointestinal microbiota in many physiological and pathophysiological processes. While morphine and other narcotics are the most widely prescribed therapy for moderate to severe pain clinically, they have been noted to alter microbial composition and promote bacterial translocation to other tissues. Here we examined the pharmacodynamic properties of chronic morphine in mice following bacterial depletion with oral gavage of an antibiotic cocktail (ABX). ABX significantly reduced gut bacteria and prevented chronic morphine induced increases in gut permeability, colonic mucosal destruction, and colonic IL-1β expression. In addition, ABX prevented the development of antinociceptive tolerance to chronic morphine in both the tail-immersion and acetic acid stretch assays. Morphine tolerance was also reduced by oral vancomycin that has 0% bioavailability. These findings were recapitulated in primary afferent neurons isolated from dorsal root ganglia (DRG) innervating the lower gastrointestinal tract, wherein in-vivo administration of ABX prevented tolerance to morphine-induced hypoexcitability. Finally, though ABX repeatedly demonstrated an ability to prevent tolerance, we show that it did not alter susceptibility to precipitation of withdrawal by naloxone. Collectively, these finding indicate that the gastrointestinal microbiome is an important modulator of physiological responses induced by chronic morphine administration.

          Related collections

          Most cited references24

          • Record: found
          • Abstract: found
          • Article: found
          Is Open Access

          Depletion of Murine Intestinal Microbiota: Effects on Gut Mucosa and Epithelial Gene Expression

          Background Inappropriate cross talk between mammals and their gut microbiota may trigger intestinal inflammation and drive extra-intestinal immune-mediated diseases. Epithelial cells constitute the interface between gut microbiota and host tissue, and may regulate host responses to commensal enteric bacteria. Gnotobiotic animals represent a powerful approach to study bacterial-host interaction but are not readily accessible to the wide scientific community. We aimed at refining a protocol that in a robust manner would deplete the cultivable intestinal microbiota of conventionally raised mice and that would prove to have significant biologic validity. Methodology/Principal Findings Previously published protocols for depleting mice of their intestinal microbiota by administering broad-spectrum antibiotics in drinking water were difficult to reproduce. We show that twice daily delivery of antibiotics by gavage depleted mice of their cultivable fecal microbiota and reduced the fecal bacterial DNA load by 400 fold while ensuring the animals' health. Mice subjected to the protocol for 17 days displayed enlarged ceca, reduced Peyer's patches and small spleens. Antibiotic treatment significantly reduced the expression of antimicrobial factors to a level similar to that of germ-free mice and altered the expression of 517 genes in total in the colonic epithelium. Genes involved in cell cycle were significantly altered concomitant with reduced epithelial proliferative activity in situ assessed by Ki-67 expression, suggesting that commensal microbiota drives cellular proliferation in colonic epithelium. Conclusion We present a robust protocol for depleting conventionally raised mice of their cultivatable intestinal microbiota with antibiotics by gavage and show that the biological effect of this depletion phenocopies physiological characteristics of germ-free mice.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Lactobacillus acidophilus modulates intestinal pain and induces opioid and cannabinoid receptors.

            Abdominal pain is common in the general population and, in patients with irritable bowel syndrome, is attributed to visceral hypersensitivity. We found that oral administration of specific Lactobacillus strains induced the expression of mu-opioid and cannabinoid receptors in intestinal epithelial cells, and mediated analgesic functions in the gut-similar to the effects of morphine. These results suggest that the microbiology of the intestinal tract influences our visceral perception, and suggest new approaches for the treatment of abdominal pain and irritable bowel syndrome.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Antibiotic-induced perturbations of the intestinal microbiota alter host susceptibility to enteric infection.

              Intestinal microbiota comprises microbial communities that reside in the gastrointestinal tract and are critical to normal host physiology. Understanding the microbiota's role in host response to invading pathogens will further advance our knowledge of host-microbe interactions. Salmonella enterica serovar Typhimurium was used as a model enteric pathogen to investigate the effect of intestinal microbiota perturbation on host susceptibility to infection. Antibiotics were used to perturb the intestinal microbiota. C57BL/6 mice were treated with clinically relevant doses of streptomycin and vancomycin in drinking water for 2 days, followed by oral infection with Salmonella enterica serovar Typhimurium. Alterations in microbiota composition and numbers were evaluated by fluorescent in situ hybridization, differential plating, and Sybr green staining. Antibiotics had a dose-dependent effect on intestinal microbiota composition. The chosen antibiotic regimen did not significantly alter the total numbers of intestinal bacteria but altered the microbiota composition. Greater preinfection perturbations in the microbiota resulted in increased mouse susceptibility to Salmonella serovar Typhimurium intestinal colonization, greater postinfection alterations in the microbiota, and more severe intestinal pathology. These results suggest that antibiotic treatment alters the balance of the microbial community, which predisposes the host to Salmonella serovar Typhimurium infection, demonstrating the importance of a healthy microbiota in host response to enteric pathogens.
                Bookmark

                Author and article information

                Journal
                Sci Rep
                Sci Rep
                Scientific Reports
                Nature Publishing Group
                2045-2322
                17 February 2017
                2017
                : 7
                : 42658
                Affiliations
                [1 ]Department of Pharmacology and Toxicology, Virginia Commonwealth University , Richmond, VA 23298, USA.
                Author notes
                [*]

                These authors contributed equally to this work.

                Article
                srep42658
                10.1038/srep42658
                5314392
                28211545
                d04eedf8-f933-4e74-8879-4965315d8158
                Copyright © 2017, The Author(s)

                This work is licensed under a Creative Commons Attribution 4.0 International License. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in the credit line; if the material is not included under the Creative Commons license, users will need to obtain permission from the license holder to reproduce the material. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/

                History
                : 31 May 2016
                : 12 January 2017
                Categories
                Article

                Uncategorized
                Uncategorized

                Comments

                Comment on this article