9
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Characterization of the Lentinula edodes exg2 gene encoding a lentinan-degrading exo-beta-1,3-glucanase.

      Current genetics
      Amino Acid Sequence, Base Sequence, Blotting, Northern, Blotting, Southern, Blotting, Western, Cloning, Molecular, Conserved Sequence, Genes, Fungal, Glucan 1,3-beta-Glucosidase, genetics, isolation & purification, metabolism, Lentinan, Molecular Sequence Data, Protein Biosynthesis, Restriction Mapping, Sequence Analysis, DNA, Shiitake Mushrooms, enzymology, Transcription, Genetic

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Lentinan, an antitumor substance purified from Lentinula edodes, is degraded during post-harvest preservation as a result of increased glucanase activity. We isolated an exo-beta-1,3-glucanase encoding gene, exg2, from L. edodes which is a homologue of an exo-glucanase-encoding gene conserved in ascomycetous fungi. The exg2 gene was cloned as an approximately 2.4-kbp cDNA, and as a genomic sequence of 3.9-kbp. The product of the exg2 gene is predicted to contain 759 amino acids with a molecular weight of 79 kDa and a pI value of 4.6. The putative N-terminus of EXG2 is identical to the N-terminal sequences of lentinan-degrading enzymes, GNase I and II, and a custom-made anti-EXG2 peptide anti-serum cross-reacted with purified GNase I and II. Transcription and translation of exg2 was low in the gills of mature fruiting bodies, but increased after harvesting. We conclude that the exg2 gene is a lentinan-degrading enzyme-encoding-gene in L. edodes.

          Related collections

          Author and article information

          Comments

          Comment on this article