13
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Comparative Transcriptome Profiling Reveals a Potential Role of Type VI Secretion System and Fimbriae in Virulence of Non-O157 Shiga Toxin-Producing Escherichia coli

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Shiga toxin-producing Escherichia coli (STEC) cause both sporadic infections and outbreaks of enteric disease in humans, with symptoms ranging from asymptomatic carriage to severe disease like haemolytic uremic syndrome (HUS). Bacterial virulence factors like subtypes of the Shiga toxin (Stx) and the locus of enterocyte effacement (LEE) pathogenicity island, as well as host factors like young age, are strongly associated with development of HUS. However, these factors alone do not accurately differentiate between strains that cause HUS and those that do not cause severe disease, which is important in the context of diagnosis, treatment, as well as infection control. We have used RNA sequencing to compare transcriptomes of 30 stx2a and eae positive STEC strains of non-O157 serogroups isolated from children <5 years of age. The strains were from children with HUS (HUS group, n = 15), and children with asymptomatic or mild disease (non-HUS group, n = 15), either induced with mitomycin C or non-induced, to reveal potential differences in gene expression levels between groups. When the HUS and non-HUS group were compared for differential expression of protein-encoding gene families, 399 of 6,119 gene families were differentially expressed (log2 fold change ≥ 1, FDR < 0.05) in the non-induced condition, whereas only one gene family was differentially expressed in the induced condition. Gene ontology and cluster analysis showed that several fimbrial operons, as well as a putative type VI secretion system (T6SS) were more highly expressed in the HUS group than in the non-HUS group, indicating a role of these in the virulence of STEC strains causing severe disease.

          Related collections

          Most cited references39

          • Record: found
          • Abstract: found
          • Article: not found

          Diarrheagenic Escherichia coli.

          Escherichia coli is the predominant nonpathogenic facultative flora of the human intestine. Some E. coli strains, however, have developed the ability to cause disease of the gastrointestinal, urinary, or central nervous system in even the most robust human hosts. Diarrheagenic strains of E. coli can be divided into at least six different categories with corresponding distinct pathogenic schemes. Taken together, these organisms probably represent the most common cause of pediatric diarrhea worldwide. Several distinct clinical syndromes accompany infection with diarrheagenic E. coli categories, including traveler's diarrhea (enterotoxigenic E. coli), hemorrhagic colitis and hemolytic-uremic syndrome (enterohemorrhagic E. coli), persistent diarrhea (enteroaggregative E. coli), and watery diarrhea of infants (entero-pathogenic E. coli). This review discusses the current level of understanding of the pathogenesis of the diarrheagenic E. coli strains and describes how their pathogenic schemes underlie the clinical manifestations, diagnostic approach, and epidemiologic investigation of these important pathogens.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Shiga-toxin-producing Escherichia coli and haemolytic uraemic syndrome.

            Most cases of diarrhoea-associated haemolytic uraemic syndrome (HUS) are caused by Shiga-toxin-producing bacteria; the pathophysiology differs from that of thrombotic thrombocytopenic purpura. Among Shiga-toxin-producing Escherichia coli (STEC), O157:H7 has the strongest association worldwide with HUS. Many different vehicles, in addition to the commonly suspected ground (minced) beef, can transmit this pathogen to people. Antibiotics, antimotility agents, narcotics, and non-steroidal anti-inflammatory drugs should not be given to acutely infected patients, and we advise hospital admission and administration of intravenous fluids. Management of HUS remains supportive; there are no specific therapies to ameliorate the course. The vascular injury leading to HUS is likely to be well under way by the time infected patients seek medical attention for diarrhoea. The best way to prevent HUS is to prevent primary infection with Shiga-toxin-producing bacteria.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              A genetic locus of enterocyte effacement conserved among diverse enterobacterial pathogens.

              Enteropathogenic Escherichia coli (EPEC) and enterohemorrhagic E. coli O157:H7 are intestinal pathogens that profoundly damage the microvilli and subapical cytoskeleton of epithelial cells. Here we report finding in EPEC a 35-kbp locus containing several regions implicated in formation of these lesions. DNA probes throughout this locus hybridize to E. coli O157:H7 and other pathogens of three genera that cause similar lesions but do not hybridize to avirulent members of the same species. The EPEC locus and a different virulence locus of uropathogenic E. coli insert into the E. coli chromosome at the identical site and share highly similar sequences near the point of insertion.
                Bookmark

                Author and article information

                Contributors
                Journal
                Front Microbiol
                Front Microbiol
                Front. Microbiol.
                Frontiers in Microbiology
                Frontiers Media S.A.
                1664-302X
                29 June 2018
                2018
                : 9
                : 1416
                Affiliations
                [1] 1Department of Clinical and Molecular Medicine, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology , Trondheim, Norway
                [2] 2Clinic of Laboratory Medicine, Department of Medical Microbiology, St. Olavs Hospital, Trondheim University Hospital , Trondheim, Norway
                Author notes

                Edited by: Dongsheng Zhou, Beijing Institute of Microbiology and Epidemiology, China

                Reviewed by: Antonio Juárez, University of Barcelona, Spain; Thibault Géry Sana, Stanford University, United States; Yufeng Yao, Shanghai Jiao Tong University, China

                *Correspondence: Christina G. Aas christina.gabrielsen@ 123456stolav.no

                This article was submitted to Infectious Diseases, a section of the journal Frontiers in Microbiology

                Article
                10.3389/fmicb.2018.01416
                6033998
                d05baaf3-7c56-41e9-9da6-9bbfb08b2f17
                Copyright © 2018 Aas, Drabløs, Haugum and Afset.

                This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

                History
                : 06 April 2018
                : 08 June 2018
                Page count
                Figures: 4, Tables: 3, Equations: 0, References: 56, Pages: 14, Words: 9454
                Categories
                Microbiology
                Original Research

                Microbiology & Virology
                stec,hus,virulence,transcriptome,adherence,fimbriae,t6ss
                Microbiology & Virology
                stec, hus, virulence, transcriptome, adherence, fimbriae, t6ss

                Comments

                Comment on this article