7
views
0
recommends
+1 Recommend
1 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Metallothionein and Cadmium Toxicology—Historical Review and Commentary

      ,
      Biomolecules
      MDPI AG

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          More than one and a half centuries ago, adverse human health effects were reported after use of a cadmium-containing silver polishing agent. Long-term cadmium exposure gives rise to kidney or bone disease, reproductive toxicity and cancer in animals and humans. At present, high human exposures to cadmium occur in small-scale mining, underlining the need for preventive measures. This is particularly urgent in view of the growing demand for minerals and metals in global climate change mitigation. This review deals with a specific part of cadmium toxicology that is important for understanding when toxic effects appear and, thus, is crucial for risk assessment. The discovery of the low-molecular-weight protein metallothionein (MT) in 1957 was an important milestone because, when this protein binds cadmium, it modifies cellular cadmium toxicity. The present authors contributed evidence in the 1970s concerning cadmium binding to MT and synthesis of the protein in tissues. We showed that binding of cadmium to metallothionein in tissues prevented some toxic effects, but that metallothionein can increase the transport of cadmium to the kidneys. Special studies showed the importance of the Cd/Zn ratio in MT for expression of toxicity in the kidneys. We also developed models of cadmium toxicokinetics based on our MT-related findings. This model combined with estimates of tissue levels giving rise to toxicity, made it possible to calculate expected risks in relation to exposure. Other scientists developed these models further and international organizations have successfully used these amended models in recent publications. Our contributions in recent decades included studies in humans of MT-related biomarkers showing the importance of MT gene expression in lymphocytes and MT autoantibodies for risks of Cd-related adverse effects in cadmium-exposed population groups. In a study of the impact of zinc status on the risk of kidney dysfunction in a cadmium-exposed group, the risks were low when zinc status was good and high when zinc status was poor. The present review summarizes this evidence in a risk assessment context and calls for its application in order to improve preventive measures against adverse effects of cadmium exposures in humans and animals.

          Related collections

          Most cited references76

          • Record: found
          • Abstract: found
          • Article: not found

          Metallothionein protection of cadmium toxicity.

          The discovery of the cadmium (Cd)-binding protein from horse kidney in 1957 marked the birth of research on this low-molecular weight, cysteine-rich protein called metallothionein (MT) in Cd toxicology. MT plays minimal roles in the gastrointestinal absorption of Cd, but MT plays important roles in Cd retention in tissues and dramatically decreases biliary excretion of Cd. Cd-bound to MT is responsible for Cd accumulation in tissues and the long biological half-life of Cd in the body. Induction of MT protects against acute Cd-induced lethality, as well as acute toxicity to the liver and lung. Intracellular MT also plays important roles in ameliorating Cd toxicity following prolonged exposures, particularly chronic Cd-induced nephrotoxicity, osteotoxicity, and toxicity to the lung, liver, and immune system. There is an association between human and rodent Cd exposure and prostate cancers, especially in the portions where MT is poorly expressed. MT expression in Cd-induced tumors varies depending on the type and the stage of tumor development. For instance, high levels of MT are detected in Cd-induced sarcomas at the injection site, whereas the sarcoma metastases are devoid of MT. The use of MT-transgenic and MT-null mice has greatly helped define the role of MT in Cd toxicology, with the MT-null mice being hypersensitive and MT-transgenic mice resistant to Cd toxicity. Thus, MT is critical for protecting human health from Cd toxicity. There are large individual variations in MT expression, which might in turn predispose some people to Cd toxicity.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Insight into the oxidative stress induced by lead and/or cadmium in blood, liver and kidneys.

            Besides being important occupational hazards, lead and cadmium are nowadays metals of great environmental concern. Both metals, without any physiological functions, can induce serious adverse health effects in various organs and tissues. Although Pb and Cd are non-redox metals, one of the important mechanisms underlying their toxicity is oxidative stress induction as a result of the generation of reactive species and/or depletion of the antioxidant defense system. Considering that the co-exposure to both metals is a much more realistic scenario, the effects of these metals on oxidative status when simultaneously present in the organism have become one of the contemporary issues in toxicology. This paper reviews short and long term studies conducted on Pb or Cd-induced oxidative stress in blood, liver and kidneys as the most prominent target organs of the toxicity of these metals and proposes the possible molecular mechanisms of the observed effects. The review is also focused on the results obtained for the effects of the combined treatment with Pb and Cd on oxidative status in target organs and on the mechanisms of their possible interactions.
              Bookmark
              • Record: found
              • Abstract: not found
              • Article: not found

              A CADMIUM PROTEIN FROM EQUINE KIDNEY CORTEX

                Bookmark

                Author and article information

                Contributors
                (View ORCID Profile)
                (View ORCID Profile)
                Journal
                BIOMHC
                Biomolecules
                Biomolecules
                MDPI AG
                2218-273X
                March 2022
                February 24 2022
                : 12
                : 3
                : 360
                Article
                10.3390/biom12030360
                35327552
                d060bfbf-f058-4b17-a4b0-6bdbf975ceb8
                © 2022

                https://creativecommons.org/licenses/by/4.0/

                History

                Comments

                Comment on this article