25
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Crosstalk between hydrogen sulfide and nitric oxide in endothelial cells

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Hydrogen sulfide (H 2S) and nitric oxide (NO) are major gasotransmitters produced in endothelial cells (ECs), contributing to the regulation of vascular contractility and structural integrity. Their interaction at different levels would have a profound impact on angiogenesis. Here, we showed that H 2S and NO stimulated the formation of new microvessels. Incubation of human umbilical vein endothelial cells (HUVECs-926) with NaHS (a H 2S donor) stimulated the phosphorylation of endothelial NO synthase (eNOS) and enhanced NO production. H 2S had little effect on eNOS protein expression in ECs. L-cysteine, a precursor of H 2S, stimulated NO production whereas blockage of the activity of H 2S-generating enzyme, cystathionine gamma-lyase (CSE), inhibited this action. CSE knockdown inhibited, but CSE overexpression increased, NO production as well as EC proliferation. LY294002 (Akt/PI3-K inhibitor) or SB203580 (p38 MAPK inhibitor) abolished the effects of H 2S on eNOS phosphorylation, NO production, cell proliferation and tube formation. Blockade of NO production by eNOS-specific siRNA or nitro-L-arginine methyl ester (L-NAME) reversed, but eNOS overexpression potentiated, the proliferative effect of H 2S on ECs. Our results suggest that H 2S stimulates the phosphorylation of eNOS through a p38 MAPK and Akt-dependent pathway, thus increasing NO production in ECs and vascular tissues and contributing to H 2S-induced angiogenesis.

          Related collections

          Most cited references35

          • Record: found
          • Abstract: found
          • Article: not found

          H2S as a physiologic vasorelaxant: hypertension in mice with deletion of cystathionine gamma-lyase.

          Studies of nitric oxide over the past two decades have highlighted the fundamental importance of gaseous signaling molecules in biology and medicine. The physiological role of other gases such as carbon monoxide and hydrogen sulfide (H2S) is now receiving increasing attention. Here we show that H2S is physiologically generated by cystathionine gamma-lyase (CSE) and that genetic deletion of this enzyme in mice markedly reduces H2S levels in the serum, heart, aorta, and other tissues. Mutant mice lacking CSE display pronounced hypertension and diminished endothelium-dependent vasorelaxation. CSE is physiologically activated by calcium-calmodulin, which is a mechanism for H2S formation in response to vascular activation. These findings provide direct evidence that H2S is a physiologic vasodilator and regulator of blood pressure.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Two's company, three's a crowd: can H2S be the third endogenous gaseous transmitter?

            Rui Wang (2002)
            Bearing the public image of a deadly "gas of rotten eggs," hydrogen sulfide (H2S) can be generated in many types of mammalian cells. Functionally, H2S has been implicated in the induction of hippocampal long-term potentiation, brain development, and blood pressure regulation. By acting specifically on KATP channels, H2S can hyperpolarize cell membranes, relax smooth muscle cells, or decrease neuronal excitability. The endogenous metabolism and physiological functions of H2S position this gas well in the novel family of endogenous gaseous transmitters, termed "gasotransmitters." It is hypothesized that H2S is the third endogenous signaling gasotransmitter, besides nitric oxide and carbon monoxide. This positioning of H2S will open an exciting field-H2S physiology-encompassing realization of the interaction of H2S and other gasotransmitters, sulfurating modification of proteins, and the functional role of H2S in multiple systems. It may shed light on the pathogenesis of many diseases related to the abnormal metabolism of H2S.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              The vasorelaxant effect of H(2)S as a novel endogenous gaseous K(ATP) channel opener.

              Hydrogen sulfide (H(2)S) has been traditionally viewed as a toxic gas. It is also, however, endogenously generated from cysteine metabolism. We attempted to assess the physiological role of H(2)S in the regulation of vascular contractility, the modulation of H(2)S production in vascular tissues, and the underlying mechanisms. Intravenous bolus injection of H(2)S transiently decreased blood pressure of rats by 12- 30 mmHg, which was antagonized by prior blockade of K(ATP) channels. H(2)S relaxed rat aortic tissues in vitro in a K(ATP) channel-dependent manner. In isolated vascular smooth muscle cells (SMCs), H(2)S directly increased K(ATP) channel currents and hyperpolarized membrane. The expression of H(2)S-generating enzyme was identified in vascular SMCs, but not in endothelium. The endogenous production of H(2)S from different vascular tissues was also directly measured with the abundant level in the order of tail artery, aorta and mesenteric artery. Most importantly, H(2)S production from vascular tissues was enhanced by nitric oxide. Our results demonstrate that H(2)S is an important endogenous vasoactive factor and the first identified gaseous opener of K(ATP) channels in vascular SMCs.
                Bookmark

                Author and article information

                Journal
                J Cell Mol Med
                J. Cell. Mol. Med
                jcmm
                Journal of Cellular and Molecular Medicine
                Blackwell Publishing Ltd
                1582-1838
                1582-4934
                July 2013
                07 June 2013
                : 17
                : 7
                : 879-888
                Affiliations
                [a ]Department of Biology, Lakehead University Thunder Bay, Ontario, Canada
                [b ]The School of Kinesiology, Lakehead University Thunder Bay, Ontario, Canada
                Author notes
                *Correspondence to: Dr. Rui WANG, Office of Vice President (Research, Economic Development and Innovation),Lakehead University 955 Oliver Road, Thunder Bay, Ontario, Canada P7B 5E1. Tel: (807) 343-8180 Fax: (807) 766-7105 E-mail: rwang@ 123456lakeheadu.ca
                Article
                10.1111/jcmm.12077
                3822893
                23742697
                d0642eaf-0483-40a9-b34b-83a14076cadd
                Copyright © 2013 Foundation for Cellular and Molecular Medicine/Blackwell Publishing Ltd.

                Re-use of this article is permitted in accordance with the Creative Commons Deed, Attribution 2.5, which does not permit commercial exploitation.

                History
                : 21 November 2012
                : 12 April 2013
                Categories
                Original Articles

                Molecular medicine
                hydrogen sulfide,nitric oxide,endothelial cells,enos,cse,cystathionine gamma-lyase
                Molecular medicine
                hydrogen sulfide, nitric oxide, endothelial cells, enos, cse, cystathionine gamma-lyase

                Comments

                Comment on this article