2
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      KLF4 Regulates Corneal Epithelial Cell Cycle Progression by Suppressing Canonical TGF-β Signaling and Upregulating CDK Inhibitors P16 and P27

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Purpose

          Krüppel-like factor 4 (KLF4) promotes corneal epithelial (CE) cell fate while suppressing mesenchymal properties. TGF-β plays a crucial role in cell differentiation and development, and if dysregulated, it induces epithelial-mesenchymal transition (EMT). As KLF4 and TGF-β regulate each other in a context-dependent manner, we evaluated the role of the crosstalk between KLF4 and TGF-β-signaling in CE homeostasis.

          Methods

          We used spatiotemporally regulated ablation of Klf4 within the adult mouse CE in ternary transgenic Klf4 Δ/ΔCE ( Klf4 LoxP/LoxP/ Krt12 rtTA/rtTA/ Tet-O-Cre ) mice and short hairpin RNA (shRNA)-mediated knockdown or lentiviral vector-mediated overexpression of KLF4 in human corneal limbal epithelial (HCLE) cells to evaluate the crosstalk between KLF4 and TGF-β-signaling components. Expression of TGF-β signaling components and cyclin-dependent kinase (CDK) inhibitors was quantified by quantitative PCR, immunoblots, and/or immunofluorescent staining.

          Results

          CE-specific ablation of Klf4 resulted in (1) upregulation of TGF-β1, -β2, -βR1, and -βR2; (2) downregulation of inhibitory Smad7; (3) hyperphosphorylation of Smad2/3; (4) elevated nuclear localization of phospho-Smad2/3 and Smad4; and (5) downregulation of CDK inhibitors p16 and p27. Consistently, shRNA-mediated knockdown of KLF4 in HCLE cells resulted in upregulation of TGF-β1 and -β2, hyperphosphorylation and nuclear localization of SMAD2/3, downregulation of SMAD7, and elevated SMAD4 nuclear localization. Furthermore, overexpression of KLF4 in HCLE cells resulted in downregulation of TGF-β1, -βR1, and -βR2 and upregulation of SMAD7, p16, and p27.

          Conclusions

          Collectively, these results demonstrate that KLF4 regulates CE cell cycle progression by suppressing canonical TGF-β signaling and overcomes the undesirable concomitant decrease in TGF-β–dependent CDK inhibitors p16 and p27 expression by directly upregulating them.

          Related collections

          Most cited references56

          • Record: found
          • Abstract: found
          • Article: not found

          Krüppel-like factor 4 (KLF4): What we currently know.

          Krüppel-like factor 4 (KLF4) is an evolutionarily conserved zinc finger-containing transcription factor that regulates diverse cellular processes such as cell growth, proliferation, and differentiation. Since its discovery in 1996, KLF4 has been gaining a lot of attention, particularly after it was shown in 2006 as one of four factors involved in the induction of pluripotent stem cells (iPSCs). Here we review the current knowledge about the different functions and roles of KLF4 in various tissue and organ systems.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            The dynamic roles of TGF-β in cancer.

            The transforming growth factor-β (TGF-β) signalling pathway plays a critical and dual role in the progression of human cancer. During the early phase of tumour progression, TGF-β acts as a tumour suppressor, exemplified by deletions or mutations in the core components of the TGF-β signalling pathway. On the contrary, TGF-β also promotes processes that support tumour progression such as tumour cell invasion, dissemination, and immune evasion. Consequently, the functional outcome of the TGF-β response is strongly context-dependent including cell, tissue, and cancer type. In this review, we describe the molecular signalling pathways employed by TGF-β in cancer and how these, when perturbed, may lead to the development of cancer. Concomitantly with our increased appreciation of the molecular mechanisms that govern TGF-β signalling, the potential to therapeutically target specific oncogenic sub-arms of the TGF-β pathway increases. Indeed, clinical trials with systemic TGF-β signalling inhibitors for treatment of cancer patients have been initiated. However, considering the important role of TGF-β in cardiovascular and many other tissues, careful screening of patients is warranted to minimize unwanted on-target side effects. Copyright © 2010 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Identification and characterization of a gene encoding a gut-enriched Krüppel-like factor expressed during growth arrest.

              A cDNA clone, named gut-enriched Krüppel-like factor (GKLF), was isolated from an NIH 3T3 library using a probe encoding the zinc finger region of the immediate-early transcription factor zif/268. The deduced GKLF amino acid sequence contains three tandem zinc fingers that are related to members of the Krüppel family of transcription factors. By indirect immunofluorescence, GKLF is localized to the cell nucleus. In cultured fibroblasts, GKLF mRNA is found in high levels in growth-arrested cells and is nearly undetectable in cells that are in the exponential phase of proliferation. The growth-arresting nature of GKLF is demonstrated by an inhibition of DNA synthesis in cells transfected with a GKLF-expressing plasmid construct. In the mouse, GKLF mRNA is present in select tissues and is most abundant in the colon, followed by the testis, lung, and small intestine. In situ hybridization experiments indicate that GKLF mRNA is enriched in epithelial cells located in the middle to upper crypt region of the colonic mucosa. Taken together, these results suggest that GKLF is potentially a negative regulator of cell growth in tissues such as the gut mucosa, where cell proliferation is intimately coupled to growth arrest and differentiation.
                Bookmark

                Author and article information

                Journal
                Invest Ophthalmol Vis Sci
                Invest. Ophthalmol. Vis. Sci
                iovs
                Invest Ophthalmol Vis Sci
                IOVS
                Investigative Ophthalmology & Visual Science
                The Association for Research in Vision and Ophthalmology
                0146-0404
                1552-5783
                February 2019
                : 60
                : 2
                : 731-740
                Affiliations
                [1 ]Department of Ophthalmology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States
                [2 ]School of Biological Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania, United States
                [3 ]Department of Molecular Microbiology and Genetics, University of Pittsburgh, Pittsburgh, Pennsylvania, United States
                [4 ]Fox Center for Vision Restoration, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States
                [5 ]McGowan Institute of Regenerative Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, United States
                [6 ]Department of Cell Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States
                Author notes
                Correspondence: Shivalingappa K. Swamynathan, University of Pittsburgh School of Medicine, 203 Lothrop Street, Room 1025, Pittsburgh, PA 15213, USA; Swamynathansk@ 123456upmc.edu .
                Article
                iovs-60-02-16 IOVS-18-26423R1
                10.1167/iovs.18-26423
                6383833
                30786277
                d0702a31-1af1-4aed-b8aa-85da5f811c54
                Copyright 2019 The Authors

                This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

                History
                : 11 December 2018
                : 17 January 2019
                Categories
                Cornea

                klf4,tgf-β,smad,emt,corneal epithelium,squamous neoplasia
                klf4, tgf-β, smad, emt, corneal epithelium, squamous neoplasia

                Comments

                Comment on this article