42
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Interferometric Monitoring of Gamma-ray Bright AGNs: S5 0716+714

      Preprint

      Read this article at

          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          We present the results of very long baseline interferometry (VLBI) observations of gamma-ray bright blazar S5 0716+714 using the Korean VLBI Network (KVN) at the 22, 43, 86, and 129 GHz bands, as part of the Interferometric Monitoring of Gamma-ray Bright AGNs (iMOGABA) KVN key science program. Observations were conducted in 29 sessions from January 16, 2013 to March 1, 2016, with the source being detected and imaged at all available frequencies. In all epochs, the source was compact on the milliarcsecond (mas) scale, yielding a compact VLBI core dominating the synchrotron emission on these scales. Based on the multi-wavelength data between 15 GHz (Owens Valley Radio Observatory) and 230 GHz (Submillimeter Array), we found that the source shows multiple prominent enhancements of the flux density at the centimeter (cm) and millimeter (mm) wavelengths, with mm enhancements leading cm enhancements by -16\(\pm\)8 days. The turnover frequency was found to vary between 21 to 69GHz during our observations. By assuming a synchrotron self-absorption model for the relativistic jet emission in S5 0716+714, we found the magnetic field strength in the mas emission region to be \(\le\)5 mG during the observing period, yielding a weighted mean of 1.0\(\pm\)0.6 mG for higher turnover frequencies (e.g., >45 GHz).

          Related collections

          Most cited references2

          • Record: found
          • Abstract: found
          • Article: found
          Is Open Access

          Early science with Korean VLBI network: the QCAL-1 43GHz calibrator survey

          This paper presents the catalog of correlated flux densities in three ranges of baseline projection lengths of 637 sources from a 43 GHz (Q-band) survey observed with the Korean VLBI Network. Of them, 623 sources have not been observed before at Q-band with VLBI. The goal of this work in the early science phase of the new VLBI array is twofold: to evaluate the performance of the new instrument that operates in a frequency range of 22-129 GHz and to build a list of objects that can be used as targets and as calibrators. We have observed the list of 799 target sources with declinations down to -40 degrees. Among them, 724 were observed before with VLBI at 22 GHz and had correlated flux densities greater than 200 mJy. The overall detection rate is 78%. The detection limit, defined as the minimum flux density for a source to be detected with 90% probability in a single observation, was in a range of 115-180 mJy depending on declination. However, some sources as weak as 70 mJy have been detected. Of 623 detected sources, 33 objects are detected for the first time in VLBI mode. We determined their coordinates with the median formal uncertainty 20 mas. The results of this work set the basis for future efforts to build the complete flux-limited sample of extragalactic sources at frequencies 22 GHz and higher at 3/4 of the celestial sphere.
            • Record: found
            • Abstract: found
            • Article: found
            Is Open Access

            Amplitude Correction Factors of KVN Observations

            , , (2015)
            We report results of investigation of amplitude calibration for very long baseline interferometry (VLBI) observations with Korean VLBI Network (KVN). Amplitude correction factors are estimated based on comparison of KVN observations at 22~GHz correlated by Daejeon hardware correlator and DiFX software correlator in Korea Astronomy and Space Science Institute (KASI) with Very Long Baseline Array (VLBA) observations at 22~GHz by DiFX software correlator in National Radio Astronomy Observatory (NRAO). We used the observations for compact radio sources, 3C 454.3, NRAO 512, OJ 287, BL Lac, 3C 279, 1633+382, and 1510-089, which are almost unresolved for baselines in a range of 350-477 km. Visibility data of the sources obtained with similar baselines at KVN and VLBA are selected, fringe-fitted, calibrated, and compared for their amplitudes. We found that visibility amplitudes of KVN observations should be corrected by factors of 1.10 and 1.35 when correlated by DiFX and Daejeon correlators, respectively. These correction factors are attributed to the combination of two steps of 2-bit quantization in KVN observing systems and characteristics of Daejeon correlator.

              Author and article information

              Journal
              2017-05-18
              Article
              1705.06835
              d073dde1-e886-4bc0-a40b-96ec29fd7931

              http://arxiv.org/licenses/nonexclusive-distrib/1.0/

              History
              Custom metadata
              36 pages, 13 figures, Accepted for publication in ApJ
              astro-ph.GA

              Galaxy astrophysics
              Galaxy astrophysics

              Comments

              Comment on this article

              Related Documents Log