12
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Effects of microgravity on maximal power of lower limbs during very short efforts in humans.

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The maximal power of the lower limbs was determined in four astronauts (age 37-53 yr) 1) during maximal pushes of approximately 250 ms on force platforms ["maximal explosive power" (MEP)] or 2) during all-out bouts of 6-7 s on an isokinetic cycloergometer [pedal frequency 1 Hz: maximal cycling power (MCP)]. The measurements were done before and immediately after spaceflights of 31-180 days. Before flight, peak and mean values were 3.18 +/- 0.38 and 1.5 +/- 0. 13 (SD) kW for MEP and 1.17 +/- 0.12 and 0.68 +/- 0.08 kW for MCP, respectively. After reentry, MEP was reduced to 67% after 31 days and to 45% after 180 days. MCP decreased less, attaining approximately 75% of preflight level, regardless of the flight duration. The recovery of MCP was essentially complete 2 wk after reentry, whereas that of MEP was slower, a complete recovery occurring after an estimated time close to that spent in flight. In the same subjects, the muscle mass of the lower limbs, as assessed by NMR, decreased by 9-13%, irrespective of flight duration (J. Zange, K. Müller, M. Schuber, H. Wackerhage, U. Hoffmann, R. W. G unther, G. Adam, J. M. Neuerburg, V. E. Sinitsyn, A. O. Bacharev, and O. I. Belichenko. Int. J. Sports Med. 18, Suppl. 4: S308-S309, 1997). The larger fall in maximal power, compared with that in muscle mass, suggests that a fraction of the former (especially relevant for MEP) is due to the effects of weightlessness on the motor unit recruitment pattern.

          Related collections

          Author and article information

          Journal
          J. Appl. Physiol.
          Journal of applied physiology (Bethesda, Md. : 1985)
          8750-7587
          0161-7567
          Jan 1999
          : 86
          : 1
          Affiliations
          [1 ] Dipartimento di Scienze e Tecnologie Biomediche dell'Università di Udine, I-33100 Udine, Italy.fisioud@dstb.uniud.it
          Article
          10.1152/jappl.1999.86.1.85
          9887117
          d07dc00e-2b28-4fa8-875a-6b7f17261d4d
          History

          Comments

          Comment on this article