Blog
About

1
views
0
recommends
+1 Recommend
1 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Diversity and distribution of food plants: Implications for conservation of the critically endangered Hainan gibbon

      ,

      Nature Conservation

      Pensoft Publishers

      Read this article at

      ScienceOpenPublisher
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          An understanding of the diversity and distribution patterns of Hainan gibbon (Nomascus hainanus) foods is essential to its conservation. We used data from plots in various successional stages and Pinus merkusii plantations (PF) of Bawangling National Nature Reserve (BNNR) to compare variations in food species diversity and composition amongst forest types. A total of 85 food species and 16,882 food plants individuals were found across forest types. Habitat-exclusive food species were most abundant in old growth natural forest (OGF), followed by mid-aged natural secondary forest (MSF). We did not find exclusive species in PF. For all food species, as well as each stem size class, PF displayed a lower species richness and abundance and, in addition, less similar species composition in each age class compared to secondary forests. The highest stem density and species richness were found in MSF. The abundance of food trees was higher in MSF and OGF than in young natural secondary forest. Results suggested that MSF could serve as an alternative habitat for Hainan gibbons after short-term recovery. Hainan gibbons might be limited to secondary forests older than 25 years old. PF was found to be unsuitable for Hainan gibbons.

          Related collections

          Most cited references 39

          • Record: found
          • Abstract: found
          • Article: not found

          Diversity in tropical rain forests and coral reefs.

          The commonly observed high diversity of trees in tropical rain forests and corals on tropical reefs is a nonequilibrium state which, if not disturbed further, will progress toward a low-diversity equilibrium community. This may not happen if gradual changes in climate favor different species. If equilibrium is reached, a lesser degree of diversity may be sustained by niche diversification or by a compensatory mortality that favors inferior competitors. However, tropical forests and reefs are subject to severe disturbances often enough that equilibrium may never be attained.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Primary forests are irreplaceable for sustaining tropical biodiversity.

            Human-driven land-use changes increasingly threaten biodiversity, particularly in tropical forests where both species diversity and human pressures on natural environments are high. The rapid conversion of tropical forests for agriculture, timber production and other uses has generated vast, human-dominated landscapes with potentially dire consequences for tropical biodiversity. Today, few truly undisturbed tropical forests exist, whereas those degraded by repeated logging and fires, as well as secondary and plantation forests, are rapidly expanding. Here we provide a global assessment of the impact of disturbance and land conversion on biodiversity in tropical forests using a meta-analysis of 138 studies. We analysed 2,220 pairwise comparisons of biodiversity values in primary forests (with little or no human disturbance) and disturbed forests. We found that biodiversity values were substantially lower in degraded forests, but that this varied considerably by geographic region, taxonomic group, ecological metric and disturbance type. Even after partly accounting for confounding colonization and succession effects due to the composition of surrounding habitats, isolation and time since disturbance, we find that most forms of forest degradation have an overwhelmingly detrimental effect on tropical biodiversity. Our results clearly indicate that when it comes to maintaining tropical biodiversity, there is no substitute for primary forests.
              Bookmark
              • Record: found
              • Abstract: not found
              • Article: not found

              A new statistical approach for assessing similarity of species composition with incidence and abundance data

                Bookmark

                Author and article information

                Journal
                Nature Conservation
                NC
                Pensoft Publishers
                1314-3301
                1314-6947
                December 18 2018
                December 18 2018
                : 31
                : 17-33
                Article
                10.3897/natureconservation.31.27407
                © 2018

                http://creativecommons.org/licenses/by/4.0/

                Comments

                Comment on this article