12
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Phytochemical Characterization of Terminalia catappa Linn. Extracts and Their antifungal Activities against Candida spp.

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Terminalia catappa Linn bark is used to treat dysentery by various populations in Southeast Asian countries, and its leaves have also been used in traditional medicine to treat hepatitis in India and the Philippines. Here, the antifungal actions of crude hydro-alcoholic extract (TcHE) and fractions from T. catappa leaves were assessed via the agar diffusion and microdilution tests on Candida reference strains and clinical isolates from patients with acquired immunodeficiency syndrome (AIDS). Additionally, the potential cytotoxic effects of TcHE were assessed on cultured human peripheral blood mononuclear cells (PBMC). T. catappa fractions and sub-fractions were analyzed by gas chromatography coupled to mass spectrometry with electron impact (GC/MS/EI), high-performance liquid chromatography coupled to mass spectrometry “electrospray” ionization in positive mode (HPLC/MS/MS/ESI +) and hydrogen nuclear magnetic resonance ( 1HNMR). TcHE and its fractions were able to inhibit the growth of all tested Candida strains with the n-butanol (FBuOH) fraction presenting the best antifungal activity. Testing of different FBuOH sub-fractions (SF) showed that SF10 was the most active against Candida spp. Fractioning of SF10 demonstrated that 5 out of its 15 sub-fractions were active against Candida spp., with SF10.5 presenting the highest activity. Chemical analysis of SF10 detected hydrolysable tannins (punicalin, punicalagin), gallic acid and flavonoid C-glycosides. Overall, the results showed that T. catappa L. leaf extract, fractions and sub-fractions were antifungal against Candida spp. and may be useful to treat diseases caused by this fungus.

          Related collections

          Most cited references39

          • Record: found
          • Abstract: found
          • Article: not found

          Cytotoxicity, antiviral and antimicrobial activities of alkaloids, flavonoids, and phenolic acids.

          Some natural products consisting of the alkaloids yohimbine and vincamine (indole-type), scopolamine and atropine (tropane-type), colchicine (tropolone-type), allantoin (imidazolidine-type), trigonelline (pyridine-type) as well as octopamine, synephrine, and capsaicin (exocyclic amine-type); the flavonoid derivatives quercetin, apigenin, genistein, naringin, silymarin, and silibinin; and the phenolic acids namely gallic acid, caffeic acid, chlorogenic acid, and quinic acid, were tested for their in vitro antiviral, antibacterial, and antifungal activities and cytotoxicity. Antiviral activity of the compounds was tested against DNA virus herpes simplex type 1 and RNA virus parainfluenza (type-3). Cytotoxicity of the compounds was determined using Madin-Darby bovine kidney and Vero cell lines, and their cytopathogenic effects were expressed as maximum non-toxic concentration. Antibacterial activity was assayed against following bacteria and their isolated strains: Escherichia coli, Pseudomonas aeruginosa, Proteus mirabilis, Klebsiella pneumoniae, Acinetobacter baumannii, Staphylococcus aureus, Enterococcus faecalis, and Bacillus subtilis, although they were screened by microdilution method against two fungi: Candida albicans and Candida parapsilosis. Atropine and gallic acid showed potent antiviral effect at the therapeutic range of 0.8-0.05 µg ml(-1), whilst all of the compounds exerted robust antibacterial effect. Antiviral and antimicrobial effects of the compounds tested herein may constitute a preliminary step for further relevant studies to identify the mechanism of action.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Advance on the Flavonoid C-glycosides and Health Benefits.

            The dietary flavonoids, especially their glycosides, are the most vital phytochemicals in diets and are of great general interest due to their diverse bioactivity. Almost all natural flavonoids exist as their O-glycoside or C-glycoside forms in plants. The dietary flavonoid C-glycosides have received less attention than their corresponding O-glycosides. This review summarizes current knowledge regarding flavonoid C-glycosides and their influence on human health. Among the flavonoid C-glycosides, flavone C-glycosides, especially vitexin, isoorientin, orientin, isovitexin and their multiglycosides are more frequently mentioned than others. Flavonoid C-monoglycosides are poorly absorbed in human beings with very few metabolites in urine and blood and are deglycosylated and degraded by human intestinal bacteria in colon. However, flavonoid C-multiglycosides are absorbed unchanged in the intestine and distributed to other tissues. Flavonoid C-glycosides showed significant antioxidant activity, anticancer and antitumor activity, hepatoprotective activity, anti-inflammatory activity, anti-diabetes activity, antiviral activity, antibacterial and antifungal activity, and other biological effects. It looks like that the C-glycosylflavonoids in most cases showed higher antioxidant and anti-diabetes potential than their corresponding O-glycosylflavonoids and aglycones. However, there is a lack of in vivo data on the biological benefits of flavonoid C-glycosides. It is necessary to investigate more on how flavonoid C-glycosides prevent and handle the diseases.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              Clinical Appearance of Oral Candida Infection and Therapeutic Strategies

              Candida species present both as commensals and opportunistic pathogens of the oral cavity. For decades, it has enthralled the clinicians to investigate its pathogenicity and to improvise newer therapeutic regimens based on the updated molecular research. Candida is readily isolated from the oral cavity, but simple carriage does not predictably result in development of an infection. Whether it remains as a commensal, or transmutes into a pathogen, is usually determined by pre-existing or associated variations in the host immune system. The candida infections may range from non-life threatening superficial mucocutaneous disorders to invasive disseminated disease involving multiple organs. In fact, with the increase in number of AIDS cases, there is a resurgence of less common forms of oral candida infections. The treatment after confirmation of the diagnosis should include recognizing and eliminating the underlying causes such as ill-fitting oral appliances, history of medications (antibiotics, corticosteroids, etc.), immunological and endocrine disorders, nutritional deficiency states and prolonged hospitalization. Treatment with appropriate topical antifungal agents such as amphotericin, nystatin, or miconazole usually resolves the symptoms of superficial infection. Occasionally, administration of systemic antifungal agents may be necessary in immunocompromised patients, the selection of which should be based upon history of recent azole exposure, a history of intolerance to an antifungal agent, the dominant Candida species and current susceptibility data.
                Bookmark

                Author and article information

                Contributors
                Journal
                Front Microbiol
                Front Microbiol
                Front. Microbiol.
                Frontiers in Microbiology
                Frontiers Media S.A.
                1664-302X
                10 April 2017
                2017
                : 8
                : 595
                Affiliations
                [1] 1Departamento de Engenharia Elétrica, Programa de Doutorado em Biotecnologia da Rede Nordeste de Biotecnologia Universidade Federal do Maranhão São Luís, Brazil
                [2] 2Laboratório de Patogênese Bacteriana, Programa de Mestrado em Biologia Parasitária, Universidade Ceuma São Luís, Brazil
                [3] 3Laboratório de Micologia Médica, Programa de Mestrado em Odontologia, Universidade Ceuma São Luís, Brazil
                [4] 4Laboratório de Micologia Médica, Programa de Mestrado em Biologia Parasitária, Universidade Ceuma São Luís, Brazil
                [5] 5Departamento de Ciências Fisiológicas, Programa de Doutorado em Biotecnologia da Rede Nordeste de Biotecnologia, Universidade Federal do Maranhão São Luís, Brazil
                [6] 6Instituto de Botânica, Centro de Pesquisa em Ecologia e Fisiologia São Paulo, Brasil
                [7] 7Programa de Pós-graduação, Universidade Ceuma São Luís, Brazil
                Author notes

                Edited by: Yuji Morita, Aichi Gakuin University, Japan

                Reviewed by: Monika Staniszewska, National Institute of Public Health—National Institute of Hygiene, Poland; Pedro Ismael Da Silva Junior, Instituto Butantan, Brazil; ChangZhong Wang, Anhui University of Chinese Medicine, China

                *Correspondence: Cristina de Andrade Monteiro cristina.monteiro@ 123456ceuma.br

                This article was submitted to Antimicrobials, Resistance and Chemotherapy, a section of the journal Frontiers in Microbiology

                Article
                10.3389/fmicb.2017.00595
                5385348
                28443078
                d0944ba1-d7ce-46fa-8de5-b61952e209d0
                Copyright © 2017 Terças, Monteiro, Moffa, Santos, Sousa, Pinto, Costa, Borges, Torres, Barros Filho, Fernandes and Monteiro.

                This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) or licensor are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

                History
                : 21 September 2016
                : 23 March 2017
                Page count
                Figures: 8, Tables: 5, Equations: 1, References: 40, Pages: 13, Words: 7828
                Funding
                Funded by: Coordenação de Aperfeiçoamento de Pessoal de Nível Superior 10.13039/501100002322
                Award ID: 3325/2013
                Funded by: Fundação de Amparo à Pesquisa e ao Desenvolvimento Científico e Tecnológico do Maranhão 10.13039/501100003758
                Award ID: REBAX 00740/13
                Categories
                Microbiology
                Original Research

                Microbiology & Virology
                plant extracts,candidiasis,aids,antifungical agents,candida,terminalia catappa
                Microbiology & Virology
                plant extracts, candidiasis, aids, antifungical agents, candida, terminalia catappa

                Comments

                Comment on this article