38
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Lunar laser ranging: a continuing legacy of the apollo program.

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          On 21 July 1969, during the first manned lunar mission, Apollo 11, the first retroreflector array was placed on the moon, enabling highly accurate measurements of the Earthmoon separation by means of laser ranging. Lunar laser ranging (LLR) turns the Earthmoon system into a laboratory for a broad range of investigations, including astronomy, lunar science, gravitational physics, geodesy, and geodynamics. Contributions from LLR include the three-orders-of-magnitude improvement in accuracy in the lunar ephemeris, a several-orders-of-magnitude improvement in the measurement of the variations in the moon's rotation, and the verification of the principle of equivalence for massive bodies with unprecedented accuracy. Lunar laser ranging analysis has provided measurements of the Earth's precession, the moon's tidal acceleration, and lunar rotational dissipation. These scientific results, current technological developments, and prospects for the future are discussed here.

          Related collections

          Author and article information

          Journal
          Science
          Science (New York, N.Y.)
          American Association for the Advancement of Science (AAAS)
          0036-8075
          0036-8075
          Jul 22 1994
          : 265
          : 5171
          Article
          265/5171/482
          10.1126/science.265.5171.482
          17781305
          d0958417-31ab-4c68-9552-3b96739c1977
          History

          Comments

          Comment on this article