0
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      A new low-nephron CKD model with hypertension, progressive decline of renal function, and enhanced inflammation in C57BL/6 mice

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          <p class="first" id="d3571890e165">Chronic kidney disease (CKD) is a major health issue in the US. The typical five-sixths nephrectomy (typical 5/6 NX) is a widely used experimental CKD model. However, the typical 5/6 NX model is hypertensive in rats but strain dependent in mice. In particular, C57BL/6 mice with the typical 5/6 NX exhibits normal blood pressure and well-preserved renal function. The goal of the present study was to create a new hypertensive CKD model in C57BL/6 mice. We first characterized the vascular architecture originated from each renal artery branch by confocal laser-scanning microscopy with fluorescent lectin. Then, a novel 5/6 NX-BL model was generated by uninephrectomy combined with 2/3 renal infarction via a ligation of upper renal artery branch on the contralateral kidney. Compared with 5/6 NX-C, the 5/6 NX-BL model exhibited elevated mean arterial pressure (137.6 ± 13.9 vs. 104.7 ± 8.2 mmHg), decreased glomerular filtration rate (82.9 ± 19.2 vs. 125.0 ± 13.9 µl/min) with a reciprocal increase in plasma creatinine (0.31 ± 0.03 vs. 0.19 ± 0.04 mg/dl), and significant renal injury as assessed by proteinuria, histology with light, and transmission electron microscopy. In addition, inflammatory status, as indicated by the level of proinflammatory cytokine TNFα and the leukocyte counts, was significantly upregulated in 5/6 NX-BL compared with the 5/6 NX-C. In summary, we developed a new hypertensive CKD model in C57BL/6 mice with 5/6 renal mass reduction by uninephrectomy and upper renal artery branch ligation on the contralateral kidney. This 5/6 NX-BL model exhibits an infarction zone-dependent hypertension and progressive deterioration of the renal function accompanied by enhanced inflammatory response. </p>

          Related collections

          Most cited references43

          • Record: found
          • Abstract: found
          • Article: not found

          Pathologic classification of diabetic nephropathy.

          Although pathologic classifications exist for several renal diseases, including IgA nephropathy, focal segmental glomerulosclerosis, and lupus nephritis, a uniform classification for diabetic nephropathy is lacking. Our aim, commissioned by the Research Committee of the Renal Pathology Society, was to develop a consensus classification combining type1 and type 2 diabetic nephropathies. Such a classification should discriminate lesions by various degrees of severity that would be easy to use internationally in clinical practice. We divide diabetic nephropathy into four hierarchical glomerular lesions with a separate evaluation for degrees of interstitial and vascular involvement. Biopsies diagnosed as diabetic nephropathy are classified as follows: Class I, glomerular basement membrane thickening: isolated glomerular basement membrane thickening and only mild, nonspecific changes by light microscopy that do not meet the criteria of classes II through IV. Class II, mesangial expansion, mild (IIa) or severe (IIb): glomeruli classified as mild or severe mesangial expansion but without nodular sclerosis (Kimmelstiel-Wilson lesions) or global glomerulosclerosis in more than 50% of glomeruli. Class III, nodular sclerosis (Kimmelstiel-Wilson lesions): at least one glomerulus with nodular increase in mesangial matrix (Kimmelstiel-Wilson) without changes described in class IV. Class IV, advanced diabetic glomerulosclerosis: more than 50% global glomerulosclerosis with other clinical or pathologic evidence that sclerosis is attributable to diabetic nephropathy. A good interobserver reproducibility for the four classes of DN was shown (intraclass correlation coefficient = 0.84) in a test of this classification.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Aspects of immune dysfunction in end-stage renal disease.

            End-stage renal disease (ESRD) is associated with significantly increased morbidity and mortality resulting from cardiovascular disease (CVD) and infections, accounting for 50% and 20%, respectively, of the total mortality in ESRD patients. It is possible that these two complications are linked to alterations in the immune system in ESRD, as uremia is associated with a state of immune dysfunction characterized by immunodepression that contributes to the high prevalence of infections among these patients, as well as by immunoactivation resulting in inflammation that may contribute to CVD. This review describes disorders of the innate and adaptive immune systems in ESRD, underlining the specific role of ESRD-associated disturbances of Toll-like receptors. Finally, based on the emerging links between the alterations of immune system, CVD, and infections in ESRD patients, it emphasizes the potential role of the immune dysfunction in ESRD as an underlying cause for the high mortality in this patient population and the need for more studies in this area.
              Bookmark
              • Record: found
              • Abstract: not found
              • Article: not found

              Inflammation, immunity, and hypertension.

                Bookmark

                Author and article information

                Journal
                American Journal of Physiology-Renal Physiology
                American Journal of Physiology-Renal Physiology
                American Physiological Society
                1931-857X
                1522-1466
                May 2018
                May 2018
                : 314
                : 5
                : F1008-F1019
                Affiliations
                [1 ]Department of Molecular Pharmacology and Physiology, University of South Florida College of Medicine, Tampa, Florida
                Article
                10.1152/ajprenal.00574.2017
                6031904
                29412703
                d0995558-93b5-4db1-9fd0-55b532324b68
                © 2018
                History

                Comments

                Comment on this article