5
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Neural crest-specific deletion of Rbfox2 in mice leads to craniofacial abnormalities including cleft palate

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Alternative splicing (AS) creates proteomic diversity from a limited size genome by generating numerous transcripts from a single protein-coding gene. Tissue-specific regulators of AS are essential components of the gene regulatory network, required for normal cellular function, tissue patterning, and embryonic development. However, their cell-autonomous function in neural crest development has not been explored. Here, we demonstrate that splicing factor Rbfox2 is expressed in the neural crest cells (NCCs), and deletion of Rbfox2 in NCCs leads to cleft palate and defects in craniofacial bone development. RNA-Seq analysis revealed that Rbfox2 regulates splicing and expression of numerous genes essential for neural crest/craniofacial development. We demonstrate that Rbfox2-TGF-β-Tak1 signaling axis is deregulated by Rbfox2 deletion. Furthermore, restoration of TGF-β signaling by Tak1 overexpression can rescue the proliferation defect seen in Rbfox2 mutants. We also identified a positive feedback loop in which TGF-β signaling promotes expression of Rbfox2 in NCCs.

          eLife digest

          Abnormalities affecting the head and face – such as a cleft lip or palate – are among the most common of all birth defects. These tissues normally develop from cells in the embryo known as the neural crest cells, and specifically a subset of these cells called the cranial neural crest cells. Most cases of cleft lip or palate are linked back to genes that affect the biology of this group of cells.

          The list of genes implicated in the impaired development of cranial neural crest cells code for proteins with a wide range of different activities. Some encode transcription factors – proteins that switch genes on or off. Others code for chromatin remodeling factors, which control how the DNA is packed inside cells. However, the role of another group of proteins – the splicing factors – remains unclear and warrants further investigation.

          When a gene is switched on its genetic code is first copied into a short-lived molecule called a transcript. These transcripts are then edited to form templates to build proteins. Splicing is one way that a transcript can be edited, which involves different pieces of the transcript being cut out and the remaining pieces being pasted together to form alternative versions of the final template. Splicing factors control this process.

          Cibi et al. now show that neural crest cells from mice make a splicing factor called Rbfox2 and that deleting this gene for this protein from only these cells leads to mice with a cleft palate and defects in the bones of their head and face.

          Further analysis helped to identify the transcripts that are spliced by Rbfox2, and the effects that these splicing events have on gene activity in mouse tissues that develop from cranial neural crest cells. Cibi et al. went on to find a signaling pathway that was impaired in the mutant cells that lacked Rbfox2. Forcing the mutant cells to over-produce one of the proteins involved in this signaling pathway (a protein named Tak1) was enough to compensate for the some of the defects caused by a lack of Rbfox2, suggesting it acts downstream of the splicing regulator.

          Lastly, Cibi et al. showed that another protein in this signaling pathway, called TGF-β, acted to increase how much Rbfox2 was made by neural crest cells. Together these findings may be relevant in human disease studies, given that altered TGF-β signaling is a common feature in many birth defects seen in humans.

          Related collections

          Most cited references68

          • Record: found
          • Abstract: found
          • Article: not found

          Fate of the mammalian cranial neural crest during tooth and mandibular morphogenesis.

          Neural crest cells are multipotential stem cells that contribute extensively to vertebrate development and give rise to various cell and tissue types. Determination of the fate of mammalian neural crest has been inhibited by the lack of appropriate markers. Here, we make use of a two-component genetic system for indelibly marking the progeny of the cranial neural crest during tooth and mandible development. In the first mouse line, Cre recombinase is expressed under the control of the Wnt1 promoter as a transgene. Significantly, Wnt1 transgene expression is limited to the migrating neural crest cells that are derived from the dorsal CNS. The second mouse line, the ROSA26 conditional reporter (R26R), serves as a substrate for the Cre-mediated recombination. Using this two-component genetic system, we have systematically followed the migration and differentiation of the cranial neural crest (CNC) cells from E9.5 to 6 weeks after birth. Our results demonstrate, for the first time, that CNC cells contribute to the formation of condensed dental mesenchyme, dental papilla, odontoblasts, dentine matrix, pulp, cementum, periodontal ligaments, chondrocytes in Meckel's cartilage, mandible, the articulating disc of temporomandibular joint and branchial arch nerve ganglia. More importantly, there is a dynamic distribution of CNC- and non-CNC-derived cells during tooth and mandibular morphogenesis. These results are a first step towards a comprehensive understanding of neural crest cell migration and differentiation during mammalian craniofacial development. Furthermore, this transgenic model also provides a new tool for cell lineage analysis and genetic manipulation of neural-crest-derived components in normal and abnormal embryogenesis.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            A gene regulatory network orchestrates neural crest formation.

            The neural crest is a multipotent, migratory cell population that is unique to vertebrate embryos and gives rise to many derivatives, ranging from the peripheral nervous system to the craniofacial skeleton and pigment cells. A multimodule gene regulatory network mediates the complex process of neural crest formation, which involves the early induction and maintenance of the precursor pool, emigration of the neural crest progenitors from the neural tube via an epithelial to mesenchymal transition, migration of progenitor cells along distinct pathways and overt differentiation into diverse cell types. Here, we review our current understanding of these processes and discuss the molecular players that are involved in the neural crest gene regulatory network.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              A Wnt5a pathway underlies outgrowth of multiple structures in the vertebrate embryo.

              Morphogenesis depends on the precise control of basic cellular processes such as cell proliferation and differentiation. Wnt5a may regulate these processes since it is expressed in a gradient at the caudal end of the growing embryo during gastrulation, and later in the distal-most aspect of several structures that extend from the body. A loss-of-function mutation of Wnt5a leads to an inability to extend the A-P axis due to a progressive reduction in the size of caudal structures. In the limbs, truncation of the proximal skeleton and absence of distal digits correlates with reduced proliferation of putative progenitor cells within the progress zone. However, expression of progress zone markers, and several genes implicated in distal outgrowth and patterning including Distalless, Hoxd and Fgf family members was not altered. Taken together with the outgrowth defects observed in the developing face, ears and genitals, our data indicates that Wnt5a regulates a pathway common to many structures whose development requires extension from the primary body axis. The reduced number of proliferating cells in both the progress zone and the primitive streak mesoderm suggests that one function of Wnt5a is to regulate the proliferation of progenitor cells.
                Bookmark

                Author and article information

                Contributors
                Role: Reviewing Editor
                Role: Senior Editor
                Journal
                eLife
                Elife
                eLife
                eLife
                eLife Sciences Publications, Ltd
                2050-084X
                26 June 2019
                2019
                : 8
                : e45418
                Affiliations
                [1 ]deptProgram in Cardiovascular and Metabolic Disorders Duke-NUS Medical School SingaporeSingapore
                [2 ]deptNational Heart Research Institute National Heart Center SingaporeSingapore
                CNRS UMR 3738, Institut Pasteur France
                National Centre for Biological Sciences, Tata Institute of Fundamental Research India
                CNRS UMR 3738, Institut Pasteur France
                University of Tokyo Japan
                Author information
                http://orcid.org/0000-0003-3937-941X
                https://orcid.org/0000-0002-2884-0074
                Article
                45418
                10.7554/eLife.45418
                6663295
                31241461
                d0b803f5-6854-4770-96a3-e595df788aa0
                © 2019, Cibi et al

                This article is distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use and redistribution provided that the original author and source are credited.

                History
                : 23 January 2019
                : 25 June 2019
                Funding
                Funded by: FundRef http://dx.doi.org/10.13039/501100001381, National Research Foundation Singapore;
                Award ID: NRF-NRFF2016-01
                Award Recipient :
                Funded by: Goh Foundation;
                Award Recipient :
                Funded by: Duke-NUS Medical School Singapore;
                Award Recipient :
                The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.
                Categories
                Research Article
                Developmental Biology
                Custom metadata
                The identification of the splicing code and all the required components of alternative splicing will be crucial for a comprehensive understanding of this process in the neural crest cell biology.

                Life sciences
                alternative splicing,neural crest,rbfox2,cleft palate,tgf-β signaling,tak1,mouse
                Life sciences
                alternative splicing, neural crest, rbfox2, cleft palate, tgf-β signaling, tak1, mouse

                Comments

                Comment on this article