23
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Dysregulated Arl1, a regulator of post-Golgi vesicle tethering, can inhibit endosomal transport and cell proliferation in yeast

      research-article

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The yeast protein Gcs1 is a GTPase-activating protein (GAP) for Arf and Arl1 G-proteins that regulate distinct steps of vesicular transport. Absence of a GAP-independent function of Gcs1 results in dysregulated Arl1, which in turn impairs cell growth and endosomal transport. Impairing vesicle-tethering pathways removes dysregulated Arl1 and alleviates these defects.

          Abstract

          Small monomeric G proteins regulated in part by GTPase-activating proteins (GAPs) are molecular switches for several aspects of vesicular transport. The yeast Gcs1 protein is a dual-specificity GAP for ADP-ribosylation factor (Arf) and Arf-like (Arl)1 G proteins, and also has GAP-independent activities. The absence of Gcs1 imposes cold sensitivity for growth and endosomal transport; here we present evidence that dysregulated Arl1 may cause these impairments. We show that gene deletions affecting the Arl1 or Ypt6 vesicle-tethering pathways prevent Arl1 activation and membrane localization, and restore growth and trafficking in the absence of Gcs1. A mutant version of Gcs1 deficient for both ArfGAP and Arl1GAP activity in vitro still allows growth and endosomal transport, suggesting that the function of Gcs1 that is required for these processes is independent of GAP activity. We propose that, in the absence of this GAP-independent regulation by Gcs1, the resulting dysregulated Arl1 prevents growth and impairs endosomal transport at low temperatures. In cells with dysregulated Arl1, an increased abundance of the Arl1 effector Imh1 restores growth and trafficking, and does so through Arl1 binding. Protein sequestration at the trans-Golgi membrane by dysregulated, active Arl1 may therefore be the mechanism of inhibition.

          Related collections

          Most cited references53

          • Record: found
          • Abstract: found
          • Article: not found

          The mechanisms of vesicle budding and fusion.

          Genetic and biochemical analyses of the secretory pathway have produced a detailed picture of the molecular mechanisms involved in selective cargo transport between organelles. This transport occurs by means of vesicular intermediates that bud from a donor compartment and fuse with an acceptor compartment. Vesicle budding and cargo selection are mediated by protein coats, while vesicle targeting and fusion depend on a machinery that includes the SNARE proteins. Precise regulation of these two aspects of vesicular transport ensures efficient cargo transfer while preserving organelle identity.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            A new vital stain for visualizing vacuolar membrane dynamics and endocytosis in yeast

            SD Emr (1995)
            We have used a lipophilic styryl dye, N-(3-triethylammoniumpropyl)-4- (p-diethylaminophenyl-hexatrienyl) pyridinium dibromide (FM 4-64), as a vital stain to follow bulk membrane-internalization and transport to the vacuole in yeast. After treatment for 60 min at 30 degrees C, FM 4- 64 stained the vacuole membrane (ring staining pattern). FM 4-64 did not appear to reach the vacuole by passive diffusion because at 0 degree C it exclusively stained the plasma membrane (PM). The PM staining decreased after warming cells to 25 degrees C and small punctate structures became apparent in the cytoplasm within 5-10 min. After an additional 20-40 min, the PM and cytoplasmic punctate staining disappeared concomitant with staining of the vacuolar membrane. Under steady state conditions, FM 4-64 staining was specific for vacuolar membranes; other membrane structures were not stained. The dye served as a sensitive reporter of vacuolar dynamics, detecting such events as segregation structure formation during mitosis, vacuole fission/fusion events, and vacuolar morphology in different classes of vacuolar protein sorting (vps) mutants. A particularly striking pattern was observed in class E mutants (e.g., vps27) where 500-700 nm organelles (presumptive prevacuolar compartments) were intensely stained with FM 4- 64 while the vacuole membrane was weakly fluorescent. Internalization of FM 4-64 at 15 degrees C delayed vacuolar labeling and trapped FM 4- 64 in cytoplasmic intermediates between the PM and the vacuole. The intermediate structures in the cytoplasm are likely to be endosomes as their staining was temperature, time, and energy dependent. Interestingly, unlike Lucifer yellow uptake, vacuolar labeling by FM 4- 64 was not blocked in sec18, sec14, end3, and end4 mutants, but was blocked in sec1 mutant cells. Finally, using permeabilized yeast spheroplasts to reconstitute FM 4-64 transport, we found that delivery of FM 4-64 from the endosome-like intermediate compartment (labeled at 15 degrees C) to the vacuole was ATP and cytosol dependent. Thus, we show that FM 4-64 is a new vital stain for the vacuolar membrane, a marker for endocytic intermediates, and a fluor for detecting endosome to vacuole membrane transport in vitro.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Multifunctional yeast high-copy-number shuttle vectors.

              A set of four yeast shuttle vectors that incorporate sequences from the Saccharomyces cerevisiae 2 mu endogenous plasmid has been constructed. These yeast episomal plasmid (YEp)-type vectors (pRS420 series) differ only in their yeast selectable markers, HIS3, TRP1, LEU2 or URA3. The pRS420 plasmids are based on the backbone of a multifunctional phagemid, pBluescript II SK+, and share its useful properties for growth in Escherichia coli and manipulation in vitro. The pRS420 plasmids have a copy number of about 20 per cell, equivalent to that of YEp24. During non-selective yeast growth, pRS420 plasmids are lost through mitotic segregation at rates similar to other YEp vectors and yeast centromeric plasmid (YCp) vectors, in the range of 1.5-5% of progeny per doubling. The pRS420 series provides high-copy-number counterparts to the current pRS vectors [Sikorski and Hieter, Genetics 122 (1989) 19-27].
                Bookmark

                Author and article information

                Contributors
                Role: Monitoring Editor
                Journal
                Mol Biol Cell
                molbiolcell
                mbc
                Mol. Bio. Cell
                Molecular Biology of the Cell
                The American Society for Cell Biology
                1059-1524
                1939-4586
                01 July 2011
                : 22
                : 13
                : 2337-2347
                Affiliations
                [1] aDepartments of Microbiology & Immunology, Dalhousie University, Halifax, Nova Scotia, Canada B3H 1X5
                [2] bBiochemistry & Molecular Biology, Dalhousie University, Halifax, Nova Scotia, Canada B3H 1X5
                University of Liverpool
                Author notes
                ‡Address correspondence to: Gerald C. Johnston ( g.c.johnston@ 123456dal.ca ).

                *Present address: Northumberland Center for Medical Education and Research, Moncton Hospital, Moncton, NB, Canada E1C 6Z8.

                †Deceased.

                Article
                E10-09-0765
                10.1091/mbc.E10-09-0765
                3128535
                21562219
                d0ccb9c5-3947-4a36-8c82-5f120b98c0f4
                © 2011 Benjamin et al. This article is distributed by The American Society for Cell Biology under license from the author(s). Two months after publication it is available to the public under an Attribution–Noncommercial–Share Alike 3.0 Unported Creative Commons License ( http://creativecommons.org/licenses/by-nc-sa/3.0).

                “ASCB®,” “The American Society for Cell Biology®,” and “Molecular Biology of the Cell®” are registered trademarks of The American Society of Cell Biology.

                History
                : 14 September 2010
                : 31 March 2011
                : 04 May 2011
                Categories
                Articles
                Membrane Trafficking

                Molecular biology
                Molecular biology

                Comments

                Comment on this article