12
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Hybrid-Aware Model for Senior Wellness Service in Smart Home

      research-article
      Sensors (Basel, Switzerland)
      MDPI
      context-aware, inspection service middleware, smart home

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Smart home technology with situation-awareness is important for seniors to improve safety and security. With the development of context-aware computing, wearable sensor technology, and ubiquitous computing, it is easier for seniors to manage their health problem in smart home environment. For monitoring senior activity in smart home, wearable, and motion sensors—such as respiration rate (RR), electrocardiography (ECG), body temperature, and blood pressure (BP)—were used for monitoring movements of seniors. For context-awareness, environmental sensors—such as gas, fire, smoke, dust, temperature, and light sensors—were used for senior location data collection. Based on senior activity, senior health status can be classified into positive and negative. Based on senior location and time, senior safety is classified into safe and emergency. In this paper, we propose a hybrid inspection service middleware for monitoring elderly health risk based on senior activity and location. This hybrid-aware model for the detection of abnormal status of seniors has four steps as follows: (1) data collection from biosensors and environmental sensors; (2) monitoring senior location and time of stay in each location using environmental sensors; (3) monitoring senior activity using biometric data; finally, (4) expectation-maximization based decision-making step recommending proper treatment based on a senior health risk ratio.

          Related collections

          Most cited references15

          • Record: found
          • Abstract: found
          • Article: found
          Is Open Access

          WSN- and IOT-Based Smart Homes and Their Extension to Smart Buildings

          Our research approach is to design and develop reliable, efficient, flexible, economical, real-time and realistic wellness sensor networks for smart home systems. The heterogeneous sensor and actuator nodes based on wireless networking technologies are deployed into the home environment. These nodes generate real-time data related to the object usage and movement inside the home, to forecast the wellness of an individual. Here, wellness stands for how efficiently someone stays fit in the home environment and performs his or her daily routine in order to live a long and healthy life. We initiate the research with the development of the smart home approach and implement it in different home conditions (different houses) to monitor the activity of an inhabitant for wellness detection. Additionally, our research extends the smart home system to smart buildings and models the design issues related to the smart building environment; these design issues are linked with system performance and reliability. This research paper also discusses and illustrates the possible mitigation to handle the ISM band interference and attenuation losses without compromising optimum system performance.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Vital signs in older patients: age-related changes.

            Vital signs are objective measures of physiological function that are used to monitor acute and chronic disease and thus serve as a basic communication tool about patient status. The purpose of this analysis was to review age-related changes of traditional vital signs (blood pressure, pulse, respiratory rate, and temperature) with a focus on age-related molecular changes, organ system changes, systemic changes, and altered compensation to stressors. The review found that numerous physiological and pathological changes may occur with age and alter vital signs. These changes tend to reduce the ability of organ systems to adapt to physiological stressors, particularly in frail older patients. Because of the diversity of age-related physiological changes and comorbidities in an individual, single-point measurements of vital signs have less sensitivity in detecting disease processes. However, serial vital sign assessments may have increased sensitivity, especially when viewed in the context of individualized reference ranges. Vital sign change with age may be subtle because of reduced physiological ranges. However, change from an individual reference range may indicate important warning signs and thus may require additional evaluation to understand potential underlying pathological processes. As a result, individualized reference ranges may provide improved sensitivity in frail, older patients.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              EEG recording and analysis for sleep research.

              The electroencephalogram (EEG) is the most common tool used in sleep research. This unit describes the methods for recording and analyzing the EEG. Detailed protocols describe recorder calibration, electrode application, EEG recording, and computer EEG analysis with power spectral analysis. Computer digitization of an analog EEG signal is discussed, along with EEG filtering and the parameters of fast Fourier transform (FFT) power spectral analysis. Sample data are provided for a typical night's analysis of EEG during NREM (non-REM) and REM sleep.
                Bookmark

                Author and article information

                Contributors
                Role: Academic Editor
                Journal
                Sensors (Basel)
                Sensors (Basel)
                sensors
                Sensors (Basel, Switzerland)
                MDPI
                1424-8220
                22 May 2017
                May 2017
                : 17
                : 5
                : 1182
                Affiliations
                Sookmyung Women’s University, Seoul 04310, Korea; jungjuri7@ 123456sm.ac.kr ; Tel.: +82-02-710-9704
                Article
                sensors-17-01182
                10.3390/s17051182
                5470927
                28531157
                d0cec1d1-d64c-4c03-8958-2d113d900fcc
                © 2017 by the author.

                Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license ( http://creativecommons.org/licenses/by/4.0/).

                History
                : 31 March 2017
                : 17 May 2017
                Categories
                Article

                Biomedical engineering
                context-aware,inspection service middleware,smart home
                Biomedical engineering
                context-aware, inspection service middleware, smart home

                Comments

                Comment on this article