148
views
0
recommends
+1 Recommend
1 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found

      A data envelopment analysis of agricultural technical efficiency of Northwest Arid Areas in China

      research-article

      Read this article at

      ScienceOpenPublisher
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Severe resource shortage and waste of resource in agricultural production make it necessary to assess efficiency to increase productivity with high efficiency and ensure sustainable agricultural development. This paper adopted an input-oriented data envelopment analysis (DEA) method with the assumption of variable returns to scale to evaluate agricultural production efficiency of 100 major irrigation districts in Northwest China in 2010. Major findings of this paper were as follows: firstly, the average value of total technical efficiency, pure technical efficiency and scale efficiency of those irrigation districts in Northwest China were 0.770, 0.825 and 0.931, respectively; secondly, 30% of irrigation districts were technically efficient, while 42% and 32% of them showed pure technical and scale efficiency respectively. Among inefficient decision-making units, total technical efficiency score varied from 0.313 to 0.966, showing significant geographical differences, but geographical differences of pure technical efficiency was more consistent with that of total technical efficiency; thirdly, input redundancy was evident. Inputs of agricultural population, irrigation area, green water, blue water, consumption of fertilizer and agricultural machinery could be reduced by 34.88%, 40.19%, 43.85%, 47.10%, 41.53% and 42.21% respectively without reducing agricultural outputs. Furthermore, irrigation area, green water and blue water had relatively high slack movement though Northwest China which is short of water resources. Based on these results, this paper drew the following conclusions: First, there is huge potential for Northwest China to improve its agricultural production efficiency, and agro-technology not input scale had greater influence on improvement. Second, farmers needed proper guidance in order to reduce agricultural inputs and it is time to centralize agricultural management for overall agricultural inputs regulation and control.

          Most cited references39

          • Record: found
          • Abstract: found
          • Article: not found

          Lost food, wasted resources: global food supply chain losses and their impacts on freshwater, cropland, and fertiliser use.

          Reducing food losses and waste is considered to be one of the most promising measures to improve food security in the coming decades. Food losses also affect our use of resources, such as freshwater, cropland, and fertilisers. In this paper we estimate the global food supply losses due to lost and wasted food crops, and the resources used to produce them. We also quantify the potential food supply and resource savings that could be made by reducing food losses and waste. We used publically available global databases to conduct the study at the country level. We found that around one quarter of the produced food supply (614 kcal/cap/day) is lost within the food supply chain (FSC). The production of these lost and wasted food crops accounts for 24% of total freshwater resources used in food crop production (27 m(3)/cap/yr), 23% of total global cropland area (31 × 10(-3)ha/cap/yr), and 23% of total global fertiliser use (4.3 kg/cap/yr). The per capita use of resources for food losses is largest in North Africa & West-Central Asia (freshwater and cropland) and North America & Oceania (fertilisers). The smallest per capita use of resources for food losses is found in Sub-Saharan Africa (freshwater and fertilisers) and in Industrialised Asia (cropland). Relative to total food production, the smallest food supply and resource losses occur in South & Southeast Asia. If the lowest loss and waste percentages achieved in any region in each step of the FSC could be reached globally, food supply losses could be halved. By doing this, there would be enough food for approximately one billion extra people. Reducing the food losses and waste would thus be an important step towards increased food security, and would also increase the efficiency of resource use in food production. Copyright © 2012 Elsevier B.V. All rights reserved.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Impacts of soil and water pollution on food safety and health risks in China.

            Environmental pollution and food safety are two of the most important issues of our time. Soil and water pollution, in particular, have historically impacted on food safety which represents an important threat to human health. Nowhere has that situation been more complex and challenging than in China, where a combination of pollution and an increasing food safety risk have affected a large part of the population. Water scarcity, pesticide over-application, and chemical pollutants are considered to be the most important factors impacting on food safety in China. Inadequate quantity and quality of surface water resources in China have led to the long-term use of waste-water irrigation to fulfill the water requirements for agricultural production. In some regions this has caused serious agricultural land and food pollution, especially for heavy metals. It is important, therefore, that issues threatening food safety such as combined pesticide residues and heavy metal pollution are addressed to reduce risks to human health. The increasing negative effects on food safety from water and soil pollution have put more people at risk of carcinogenic diseases, potentially contributing to 'cancer villages' which appear to correlate strongly with the main food producing areas. Currently in China, food safety policies are not integrated with soil and water pollution management policies. Here, a comprehensive map of both soil and water pollution threats to food safety in China is presented and integrated policies addressing soil and water pollution for achieving food safety are suggested to provide a holistic approach.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Ecological intensification of cereal production systems: yield potential, soil quality, and precision agriculture.

              Wheat (Triticum aestivum L.), rice (Oryza sativa L.), and maize (Zea mays L.) provide about two-thirds of all energy in human diets, and four major cropping systems in which these cereals are grown represent the foundation of human food supply. Yield per unit time and land has increased markedly during the past 30 years in these systems, a result of intensified crop management involving improved germplasm, greater inputs of fertilizer, production of two or more crops per year on the same piece of land, and irrigation. Meeting future food demand while minimizing expansion of cultivated area primarily will depend on continued intensification of these same four systems. The manner in which further intensification is achieved, however, will differ markedly from the past because the exploitable gap between average farm yields and genetic yield potential is closing. At present, the rate of increase in yield potential is much less than the expected increase in demand. Hence, average farm yields must reach 70-80% of the yield potential ceiling within 30 years in each of these major cereal systems. Achieving consistent production at these high levels without causing environmental damage requires improvements in soil quality and precise management of all production factors in time and space. The scope of the scientific challenge related to these objectives is discussed. It is concluded that major scientific breakthroughs must occur in basic plant physiology, ecophysiology, agroecology, and soil science to achieve the ecological intensification that is needed to meet the expected increase in food demand.
                Bookmark

                Author and article information

                Contributors
                Journal
                Front. Agr. Sci. Eng.
                FASE
                CN10-1204/S
                Frontiers of Agricultural Science and Engineering
                Higher Education Press (4 Huixin Dongjie, Chaoyang District, Beijing 100029, China )
                2095-7505
                2095-977X
                2017
                : 4
                : 2
                : 195-207
                Affiliations
                [1 ]. Key Laboratory of Agricultural Soil and Water Engineering in Arid Area, Ministry of Education/Northwest A&F University, Yangling 712100, China
                [2 ]. Institute of Water Saving Agriculture in Arid Regions of China, Northwest A&F University, Yangling 712100, China
                [3 ]. Institute of Soil and Water Conservation, Chinese Academy of Sciences & Ministry of Water Resources, Yangling 712100, China
                Author notes
                Shilijie@nwafu.edu.cn
                Article
                10.15302/J-FASE-2017153
                d0e1315a-ec45-437b-b07f-1fd2fa4524e5
                Copyright @ 2014

                This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

                History
                : 29 November 2016
                : 15 January 2017
                Categories
                RESEARCH ARTICLE

                Management,Industrial organization,Risk management,Economics
                Northwest Arid Areas in China,input redundancy,irrigation districts,agricultural production efficiency,DEA model

                Comments

                Comment on this article